cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298683 Start with the square tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of squares after n iterations.

Original entry on oeis.org

1, 1, 1, 13, 37, 169, 577, 2269, 8245, 31225, 115633, 433357, 1613701, 6029641, 22488481, 83957053, 313274197, 1169270809, 4363546897, 16285441069, 60777168805, 226825331305, 846519962113, 3159262905757, 11790514883701, 44002830183481, 164220738741361
Offset: 0

Views

Author

Felix Fröhlich, Jan 24 2018

Keywords

Comments

The following substitution rules apply to the tiles:
triangle with 6 markings -> 1 hexagon
triangle with 4 markings -> 1 square, 2 triangles with 4 markings
square -> 1 square, 4 triangles with 6 markings
hexagon -> 7 triangles with 6 markings, 3 triangles with 4 markings, 3 squares
a(n) is also one more than the number of triangles with 4 markings after n iterations when starting with the square tile.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 - 2 x) (1 - 7 x^2))/((1 - x) (1 + 2 x) (1 - 4 x + x^2)), {x, 0, 26}], x] (* or *)
    LinearRecurrence[{3, 5, -9, 2}, {1, 1, 1, 13}, 27] (* Michael De Vlieger, Jan 28 2018 *)
    f[n_] := Simplify[(-13 + (-1)^(n + 1)*2^(2 + n) + (15 - 7 Sqrt[3])*(2 + Sqrt[3])^n + (2 - Sqrt[3])^n*(15 + 7 Sqrt[3]))/13]; Array[f, 28, 0] (* Robert G. Wilson v, Feb 26 2018 *)
  • PARI
    /* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */
    substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w
    terms(n) = my(v=[0, 0, 1, 0], i=0); while(1, print1(v[3], ", "); i++; if(i==n, break, v=substitute(v)))
    
  • PARI
    Vec(((1-2*x)*(1-7*x^2))/((1-x)*(1+2*x)*(1-4*x+x^2)) + O(x^40)) \\ Colin Barker, Jan 25 2018

Formula

G.f.: ((1-2*x)*(1-7*x^2))/((1-x)*(1+2*x)*(1-4*x+x^2)). - Joerg Arndt, Jan 25 2018
From Colin Barker, Jan 25 2018: (Start)
a(n) = (1/13)*(-13 + (-1)^(1+n)*2^(2+n) + (15-7*sqrt(3))*(2+sqrt(3))^n + (2-sqrt(3))^n*(15+7*sqrt(3))).
a(n) = 3*a(n-1) + 5*a(n-2) - 9*a(n-3) + 2*a(n-4) for n>3.
(End)
a(n) = ((15 - 7*sqrt(3))*(2 + sqrt(3))^n + (2 - sqrt(3))^n*(15 + 7*sqrt(3)) - 4*(-2)^n)/13 - 1. - Bruno Berselli, Jan 25 2018