A298799 Expansion of (1-27*x)^(-1/9).
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..700
Crossrefs
Programs
-
GAP
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
Maple
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018 # Alternative: A298799 := n -> (-27)^n*binomial(-1/9, n): seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
PARI
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
Formula
a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
Comments