cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298802 Growth series for group with presentation < S, T : S^4 = T^4 = (S*T)^4 = 1 >.

Original entry on oeis.org

1, 4, 10, 24, 56, 128, 294, 676, 1552, 3564, 8186, 18800, 43176, 99160, 227734, 523020, 1201184, 2758676, 6335658, 14550664, 33417496, 76747632, 176260934, 404806196, 929690160, 2135154556, 4903660570, 11261895264, 25864409480, 59400985544, 136422101046, 313311125788, 719559813184
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Cf. A008579.

Programs

  • Magma
    R := RationalFunctionField(Integers());
    PSR25 := PowerSeriesRing(Integers():Precision := 25);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR25!gf);
    
  • Mathematica
    LinearRecurrence[{2,0,2,-1},{1,4,10,24,56},40] (* Harvey P. Dale, Jan 02 2020 *)
  • PARI
    Vec((1 + x)^2*(1 + x^2) / (1 - 2*x - 2*x^3 + x^4) + O(x^40)) \\ Colin Barker, Feb 04 2018

Formula

G.f.: (1 + x)^2*(1 + x^2) / (1 - 2*x - 2*x^3 + x^4).
a(n) = 2*a(n-1) + 2*a(n-3) - a(n-4) for n>4. - Colin Barker, Feb 04 2018