A298808 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^4 = 1 >.
1, 3, 4, 6, 6, 3, 1
Offset: 0
Links
Programs
-
Magma
// See Magma program in A298805.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
// See Magma program in A298805.
// To get the growth function for the group with presentation // < S, T | S^a = T^b = (S*I)^c = 1 > a:=2; b:=3; c:=7; R:= RationalFunctionField(Integers()); PSR := PowerSeriesRing(Integers():Precision := 100); FG := FreeGroup(2); TG := quo; f, A :=IsAutomaticGroup(TG); gf := GrowthFunction(A); R!gf; Coefficients(PSR!gf);
LinearRecurrence[{-1,0,0,1,2,1,0,1,0,1,2,1,0,0,-1,-1},{1,3,4,6,8,12,16,22,24,34,40,56,62,83,98,133,152,202,236},60] (* Harvey P. Dale, Jun 15 2021 *)
Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 17*x^6 + 21*x^7 + 21*x^8 + 21*x^9 + 21*x^10 + 19*x^11 + 15*x^12 + 12*x^13 + 9*x^14 + 6*x^15 + 3*x^16 - 2*x^17 - 2*x^18) / ((1 + x + x^2 + x^3 + x^4)*(1 - x^2 - x^4 + x^6 - x^8 - x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018
// See Magma program in A298805.
Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + 25*x^8 + 27*x^9 + 29*x^10 + 33*x^11 + 33*x^12 + 33*x^13 + 33*x^14 + 33*x^15 + 33*x^16 + 33*x^17 + 33*x^18 + 31*x^19 + 27*x^20 + 24*x^21 + 21*x^22 + 18*x^23 + 15*x^24 + 12*x^25 + 9*x^26 + 6*x^27 + 3*x^28 - 2*x^29 - 2*x^30) / ((1 + x + x^2)*(1 + x^3 + x^6)*(1 - x^2 - x^4 - x^6 - x^8 + x^10 - x^12 - x^14 - x^16 - x^18 + x^20)) + O(x^60)) \\ Colin Barker, Feb 06 2018
R:= RationalFunctionField(Integers()); PSR25 := PowerSeriesRing(Integers():Precision := 25); FG := FreeGroup(2); TG := quo; f, A :=IsAutomaticGroup(TG); gf := GrowthFunction(A); R!gf; Coefficients(PSR25!gf);
LinearRecurrence[{0,1,3,1,0,-1},{1,4,8,16,30,50,88,150},40] (* Harvey P. Dale, May 03 2019 *)
Vec((1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)) + O(x^40)) \\ Colin Barker, Feb 04 2018
// See Magma program in A298805.
Vec((1 - x + x^2)*(1 + x + x^2)*(1 + x - x^2 + x^3 - x^4 + x^5 + x^6) / (1 - 3*x + 2*x^2 - x^3 - 2*x^4 + 3*x^5 - 2*x^6 - x^7 + 2*x^8 - 3*x^9 + x^10) + O(x^40)) \\ Colin Barker, Feb 06 2018
// See Magma program in A298805.
LinearRecurrence[{0,1,2,3,5,3,2,1,0,-1},{1,4,8,16,32,64,126,242,472,920,1792,3486},40] (* Harvey P. Dale, Jul 02 2025 *)
Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 15*x^6 + 12*x^7 + 9*x^8 + 6*x^9 + 3*x^10 - 2*x^11) / ((1 + x + x^2 + x^3 + x^4)*(1 - x - x^2 - x^3 - x^4 - x^5 + x^6)) + O(x^40)) \\ Colin Barker, Feb 06 2018
// See Magma program in A298805.
// See Magma program in A298805.
Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 9*x^6 + 9*x^7 + 9*x^8 + 6*x^9 + 6*x^10 + 3*x^11 + 3*x^12 - 2*x^14) / ((1 - x + x^2)*(1 + x + x^2)*(1 - x^2 - x^4 - x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018
// See Magma program in A298805.
Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 21*x^7 + 23*x^8 + 27*x^9 + 27*x^10 + 27*x^11 + 27*x^12 + 27*x^13 + 27*x^14 + 25*x^15 + 21*x^16 + 18*x^17 + 15*x^18 + 12*x^19 + 9*x^20 + 6*x^21 + 3*x^22 - 2*x^23 - 2*x^24) / ((1 - x + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 2*x^2 + x^6 - 2*x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018
// See Magma program in A298805.
Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 10*x^6 + 12*x^7 + 12*x^8 + 12*x^9 + 12*x^10 + 9*x^11 + 9*x^12 + 6*x^13 + 6*x^14 + 3*x^15 + 3*x^16 - 2*x^18) / ((1 + x^2)^2*(1 + x^4)*(1 - 2*x^2 + x^4 - 2*x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018
Comments