A298813 Decimal expansion of the greatest real zero of x^4 - 2*x^2 - x + 1.
1, 4, 9, 0, 2, 1, 6, 1, 2, 0, 0, 9, 9, 9, 5, 3, 6, 4, 8, 1, 1, 6, 3, 8, 6, 8, 4, 2, 3, 7, 8, 6, 2, 6, 7, 4, 2, 9, 0, 1, 2, 4, 2, 3, 0, 7, 3, 2, 4, 8, 9, 1, 0, 2, 4, 4, 1, 0, 8, 4, 9, 6, 3, 7, 1, 5, 6, 1, 1, 5, 5, 0, 1, 5, 1, 6, 4, 0, 8, 7, 8, 3, 1, 1, 0, 8
Offset: 1
Examples
1.49021612009995...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r = x /. NSolve[x^4 - 2 x^2 - x + 1 == 0, x, 100][[4]]; RealDigits[r][[1]]; (* A298813 *) RealDigits[Root[x^4-2x^2-x+1,2],10,120][[1]] (* Harvey P. Dale, May 02 2022 *)
-
PARI
solve(x=1, 2, x^4 - 2*x^2 - x + 1) \\ Michel Marcus, Nov 05 2018
Formula
Equals sqrt((1 + 2*cos(arccos(155/128)/3))/3) + sqrt(2/3 - 2*cos(arccos(155/128)/3)/3 + sqrt(3/(1 + 2*cos(arccos(155/128)/3)))/4). - Vaclav Kotesovec, Sep 21 2023
Equals sqrt(1/3 + s/9 + 1/s) + sqrt(2/3 - s/9 - 1/s + 1 / (4 * sqrt(1/3 + s/9 + 1/s))) where s = (4185/128 + sqrt(5570289/16384))^(1/3). - Michal Paulovic, Dec 30 2023
Comments