cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A299018 Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial P(n) = n*(x + 1)*P(n - 1) - (n - 2)^2*x*P(n - 2).

Original entry on oeis.org

1, 2, 2, 6, 11, 6, 24, 60, 60, 24, 120, 366, 501, 366, 120, 720, 2532, 4242, 4242, 2532, 720, 5040, 19764, 38268, 46863, 38268, 19764, 5040, 40320, 172512, 373104, 528336, 528336, 373104, 172512, 40320, 362880, 1668528, 3942108, 6237828, 7213761, 6237828, 3942108, 1668528, 362880
Offset: 1

Views

Author

F. Chapoton, Jan 31 2018

Keywords

Examples

			For n = 3, the polynomial is 6*x^2 + 11*x + 6.
The first few polynomials, as a table:
[1],
[2,    2],
[6,    11,    6],
[24,   60,    60,  24],
[120,  366,   501, 366, 120]
		

Crossrefs

Very similar to A298854.
Row sums are A277382(n-1) for n>0.
Leftmost and rightmost columns are A000142.
Alternating row sums are A177145.
Alternating row sum of row 2*n+1 is A001818(n).

Programs

  • Maple
    P:= proc(n) option remember; expand(`if`(n<2, n,
          n*(x+1)*P(n-1)-(n-2)^2*x*P(n-2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(P(n)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Jan 31 2018
    A := proc(n,k) ## n >= 0 and k = 0 .. n
        option remember;
        if n = 0 and k = 0 then
            1
        elif n > 0 and k >= 0 and k <= n then
            (n+1)*(A(n-1,k)+A(n-1,k-1))-(n-1)^2*A(n-2,k-1)
        else
            0
        end if;
    end proc: # Yu-Sheng Chang, Apr 14 2020
  • Mathematica
    P[n_] := P[n] = Expand[If[n < 2, n, n (x+1) P[n-1] - (n-2)^2 x P[n-2]]];
    row[n_] := CoefficientList[P[n], x];
    row /@ Range[12] // Flatten (* Jean-François Alcover, Dec 10 2019 *)
  • Sage
    @cached_function
    def poly(n):
        x = polygen(ZZ, 'x')
        if n < 1:
            return x.parent().zero()
        elif n == 1:
            return x.parent().one()
        else:
            return n * (x + 1) * poly(n - 1) - (n - 2)**2 * x * poly(n - 2)

Formula

P(0) = 0, P(1) = 1 and P(n) = n * (x + 1) * P(n - 1) - (n - 2)^2 * x * P(n - 2).
Showing 1-1 of 1 results.