A298931 Expansion of psi(x^4) * c(x^3) / (3*x) where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.
1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 3, 0, 0, 2, 2, 0, 4, 1, 0, 0, 2, 0, 4, 0, 0, 4, 1, 0, 6, 2, 0, 0, 2, 0, 5, 0, 0, 3, 3, 0, 6, 1, 0, 0, 4, 0, 6, 0, 0, 4, 5, 0, 4, 3, 0, 0, 2, 0, 8, 0, 0, 4, 3, 0, 6, 3, 0, 0, 4, 0, 9, 0, 0, 6, 4, 0, 6, 2, 0, 0, 4, 0, 6, 0, 0
Offset: 0
Keywords
Examples
G.f. = q^3 + q^9 + q^11 + 2*q^15 + q^17 + 2*q^23 + 3*q^27 + 2*q^33 + ... G.f. = 1 + x^3 + x^4 + 2*x^6 + x^7 + 2*x^10 + 3*x^12 + 2*x^15 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^8]^2 QPochhammer[ x^9]^3 / (QPochhammer[ x^3] QPochhammer[ x^4]), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 * eta(x^9 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)), n))};
Comments