cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298931 Expansion of psi(x^4) * c(x^3) / (3*x) where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 3, 0, 0, 2, 2, 0, 4, 1, 0, 0, 2, 0, 4, 0, 0, 4, 1, 0, 6, 2, 0, 0, 2, 0, 5, 0, 0, 3, 3, 0, 6, 1, 0, 0, 4, 0, 6, 0, 0, 4, 5, 0, 4, 3, 0, 0, 2, 0, 8, 0, 0, 4, 3, 0, 6, 3, 0, 0, 4, 0, 9, 0, 0, 6, 4, 0, 6, 2, 0, 0, 4, 0, 6, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 29 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q^3 + q^9 + q^11 + 2*q^15 + q^17 + 2*q^23 + 3*q^27 + 2*q^33 + ...
G.f. = 1 + x^3 + x^4 + 2*x^6 + x^7 + 2*x^10 + 3*x^12 + 2*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^8]^2 QPochhammer[ x^9]^3 / (QPochhammer[ x^3] QPochhammer[ x^4]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 * eta(x^9 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)), n))};

Formula

Expansion of q^(-3/2) * eta(q^8)^2 * eta(q^9)^3 / (eta(q^3) * eta(q^4)) in powers of q.
Euler transform of a period 72 sequence.
A005872(2*n + 3) = 6*a(n). a(3*n) = A298932(n). a(3*n + 1) = A263452(n-1). a(3*n + 2) = a(4*n + 1) = 0.