A298946 a(n) = binomial(2*c-1, c-1) (mod c^4), where c is the n-th composite number.
35, 462, 2339, 4627, 2378, 4238, 5148, 1260, 57635, 85026, 64410, 100509, 163716, 171918, 93876, 309780, 148969, 444220, 370712, 532771, 652200, 938386, 816466, 907874, 569300, 1107298, 2470810, 2953692, 887812, 1341810, 2956584, 1941390, 589961, 6248628
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: F:= 10; for n from 4 while count < 100 do F:= F * (4*n-2)/n; if not isprime(n) then count:= count+1; R:= R, F mod (n^4); fi od: R; # Robert Israel, Feb 02 2018
-
Mathematica
Table[Mod[Binomial[2 c - 1, c - 1], c^4], {c, Select[Range@ 50, CompositeQ]}] (* Michael De Vlieger, Feb 01 2018 *)
-
PARI
forcomposite(c=1, 200, print1(lift(Mod(binomial(2*c-1, c-1), c^4)), ", "))
-
Python
from sympy import binomial, composite def A298946(n): c = composite(n) return binomial(2*c-1,c-1) % c**4 # Chai Wah Wu, Feb 02 2018
Comments