cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088164 Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).

Original entry on oeis.org

16843, 2124679
Offset: 1

Views

Author

Christian Schroeder, Sep 21 2003

Keywords

Comments

McIntosh and Roettger showed that the next term, if it exists, must be larger than 10^9. - Felix Fröhlich, Aug 23 2014
When cb(m)=binomial(2m,m) denotes m-th central binomial coefficient then, obviously, cb(a(n))=2 mod a(n)^4. I have verified that among all naturals 1A246134). One might therefore wonder whether this is true in general. - Stanislav Sykora, Aug 26 2014
Romeo Mestrovic, Congruences for Wolstenholme Primes, Lemma 2.3, shows that the criterion for p to be a Wolstenholme prime is equivalent to p dividing A027641(p-3). In 1847 Cauchy proved that this was a necessary condition for the failure of the first case of Fermat's Last Theorem for the exponent p (see Ribenboim, 13 Lectures, p. 29). - John Blythe Dobson, May 01 2015
Primes p such that p^3 divides A001008(p-1) (Zhao, 2007, p. 18). Also: Primes p such that (p, p-3) is an irregular pair (cf. Buhler, Crandall, Ernvall, Metsänkylä, 1993, p. 152). Keith Conrad observes that for the two known (as of 2015) terms ord_p(H_p-1) = 3 is satisfied, where ord_p(H_p-1) gives the p-adic valuation of H_p-1 (cf. Conrad, p. 5). Romeo Mestrovic conjectures that p is a Wolstenholme prime if and only if S_(p-2)(p) == 0 (mod p^3), where S_k(i) denotes the sum of the k-th powers of the positive integers up to and including (i-1) (cf. Mestrovic, 2012, conjecture 2.10). - Felix Fröhlich, May 20 2015
Primes p that divide the Wolstenholme quotient W_p (A034602). Also, primes p such that p^2 divides the Babbage quotient b_p (A263882). - Jonathan Sondow, Nov 24 2015
The only known composite numbers n such that binomial(2n-1, n-1) is congruent to 1 mod n^2 are the numbers n = p^2 where p is a Wolstenholme prime: see A267824. - Jonathan Sondow, Jan 27 2016
The converse of Wolstenholme's theorem implies that if an integer n satisfies the congruence binomial(2*n-1, n-1) == 1 (mod n^4), then n is a term of this sequence, i.e., then n is necessarily prime, or, equivalently, A298946(i) > 1 for all i > 0. Whether this is true for all such n is an open problem. - Felix Fröhlich, Feb 21 2018
Primes p such that binomial(2*p-1, p-1) == 1-2*p*Sum_{k=1..p-1} 1/k - 2*p^2*Sum_{k=1..p-1} 1/k^2 (mod p^7) (cf. Mestrovic, 2011, Corollary 4). - Felix Fröhlich, Feb 21 2018
These are primes p such that p^2 divides A007406(p-1) (Mestrovic, 2015, p. 241, Lemma 2.3). - Amiram Eldar and Thomas Ordowski, Jul 29 2019
If a third Wolstenholme prime exists it is larger than 6*10^10 (cf. Hathi, Mossinghoff, Trudgian, 2021). - Felix Fröhlich, Apr 27 2021
Named after the English mathematician Joseph Wolstenholme (1829-1891). - Amiram Eldar, Jun 10 2021
Primes p such that tanh(Sum_{k=1..p-1} artanh(k/p)) == 0 (mod p^4). - Thomas Ordowski, Apr 17 2025

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Sect. B31.
  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (Springer, 1979).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 23.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^4)| (Binomial(2*p-1,p-1) mod (p^4)eq 1)]; // Vincenzo Librandi, May 02 2015
  • Mathematica
    For[i = 2, i <= 20000, i++, {If[PrimeQ[i] && Mod[Binomial[2*i - 1, i - 1], i^4] == 1, Print[i]]}] (* Dylan Delgado, Mar 02 2021 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(binomial(2*n-1, n-1), n^4)==1, print1(n, ", "))); \\ Felix Fröhlich, May 18 2014
    

Formula

A000984(a(n)) = 2 mod a(n)^4. - Stanislav Sykora, Aug 26 2014
A099908(a(n)) == 1 mod a(n)^4. - Jonathan Sondow, Nov 24 2015
A034602(PrimePi(a(n))) == 0 mod a(n) and A263882(PrimePi(a(n))) == 0 mod a(n)^2. - Jonathan Sondow, Dec 03 2015

A298944 a(n) = 2^(c-1) mod c^2, where c is the n-th composite number.

Original entry on oeis.org

8, 32, 0, 13, 12, 32, 156, 184, 0, 176, 288, 319, 464, 320, 341, 496, 40, 64, 212, 0, 301, 308, 9, 1040, 952, 472, 1088, 1544, 800, 391, 508, 2048, 1191, 1312, 922, 2608, 284, 2359, 1920, 688, 1800, 3488, 2668, 2524, 0, 2291, 428, 144, 3109, 2612, 1472, 2888
Offset: 1

Views

Author

Felix Fröhlich, Jan 30 2018

Keywords

Comments

a(n) = 0 iff c is a term of A000079 > 4.
Composites c where a(n) = 1 could be called "Wieferich pseudoprimes". Do any such composites exist?
A necessary condition for c to be a "Wieferich pseudoprime" would be that it is a term of both A001567 and A270833 (see comments in A240719).

Crossrefs

Programs

  • Maple
    map(c -> 2&^(c-1) mod c^2, remove(isprime, [$4..1000])); # Robert Israel, Feb 27 2018
  • Mathematica
    composite[n_Integer] := FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1]; Array[With[{c = composite@ #}, Mod[2^(c - 1), c^2]] &, 52] (* Michael De Vlieger, Jan 31 2018, composite function by Robert G. Wilson v at A066277 *)
  • PARI
    forcomposite(c=1, 200, print1(lift(Mod(2, c^2)^(c-1)), ", "))

A298945 a(n) = F_{c-(5/c)} mod c^2, where c is the n-th composite number, F_i = A000045(i) and (5/c) is the Kronecker symbol.

Original entry on oeis.org

2, 5, 34, 21, 55, 89, 37, 160, 98, 293, 365, 150, 101, 433, 25, 665, 696, 709, 440, 994, 883, 1090, 765, 1241, 230, 1511, 1355, 257, 805, 20, 1382, 289, 2275, 1525, 1414, 821, 1373, 1820, 685, 1504, 2177, 720, 3102, 1302, 1250, 190, 2425, 2178, 2832, 3935
Offset: 1

Views

Author

Felix Fröhlich, Jan 30 2018

Keywords

Comments

Composites c where a(n) = 0 could be called "Wall-Sun-Sun pseudoprimes" or "Fibonacci-Wieferich pseudoprimes". Do any such composites exist?
Any such c would have to be a term of A241505.

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    count:= 0: R:= NULL:
    for n from 4 while count < N do
    if not isprime(n) then
      count:= count+1;
      R:= R, combinat:-fibonacci(n - numtheory:-jacobi(5,n)) mod n^2;
    fi
    od:
    R; # Robert Israel, Feb 02 2018
  • Mathematica
    composite[n_Integer] := FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1] ; Array[With[{c = composite@ #}, Mod[Fibonacci[c - KroneckerSymbol[5, c]], c^2]] &, 50] (* Michael De Vlieger, Jan 31 2018, composite function by Robert G. Wilson v at A066277 *)
  • PARI
    forcomposite(c=1, 200, print1(lift(Mod(fibonacci(c-kronecker(5, c)), c^2)), ", "))
Showing 1-3 of 3 results.