A300628 Triangular array T(n,k) giving coefficients in expansion of Product_{j=1..n} (1+x^j)^2 mod x^(n+1)-1.
1, 2, 2, 6, 5, 5, 16, 16, 16, 16, 52, 51, 51, 51, 51, 172, 170, 170, 172, 170, 170, 586, 585, 585, 585, 585, 585, 585, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 7286, 7280, 7280, 7285, 7280, 7280, 7285, 7280, 7280, 26216, 26214, 26214, 26214, 26214, 26216, 26214, 26214, 26214, 26214
Offset: 0
Examples
Triangle begins: A053633 k 0 1 2 3 4 | k 0 1 2 3 4 5 6 7 8 9 n |n 0 1; |1 1, 1; 1 2, 2; |3 2, 2, 2, 2; 2 6, 5, 5; |5 6, 5, 5, 6, 5, 5; 3 16, 16, 16, 16; |7 16, 16, 16, 16, 16, 16, 16, 16; 4 52, 51, 51, 51, 51; |9 52, 51, 51, 51, 51, 52, 51, 51, 51, 51; ... | ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Programs
-
PARI
T(n,k) = polcoeff(prod(j=1, n, (1+x^j)^2) % (x^(n+1) - 1), k); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 10 2018