cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054660 Number of monic irreducible polynomials over GF(4) of degree n with fixed nonzero trace.

Original entry on oeis.org

1, 2, 5, 16, 51, 170, 585, 2048, 7280, 26214, 95325, 349520, 1290555, 4793490, 17895679, 67108864, 252645135, 954437120, 3616814565, 13743895344, 52357696365, 199911205050, 764877654105, 2932031006720, 11258999068416
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2000

Keywords

Comments

Also number of Lyndon words of length n with trace 1 over GF(4).
Let x = RootOf( z^2+z+1 ) and y = 1+x. Also number of Lyndon words of length n with trace x over GF(4). Also number of Lyndon words of length n with trace y over GF(4).
Also number of 4-ary Lyndon words (i.e., Lyndon words over Z_4) of length n with trace 1 (mod 4). Also the same with trace 3 (mod 4). - Andrey Zabolotskiy, Dec 19 2020

Examples

			a(3; y)=5 since the five Lyndon words over GF(4) of trace y and length 3 are { 00y, 01x, 0x1, 11y, xxy }; the five Lyndon words over Z_4 of trace 1 (mod 4) and length 3 are { 001, 023, 032, 113, 122 }.
		

Crossrefs

Formula

From Seiichi Manyama, Mar 11 2018: (Start)
a(n) = A000048(2*n) = (1/(4*n)) * Sum_{odd d divides n} mu(d)*4^(n/d), where mu is the Möbius function A008683.
a(n+1) = A300628(n,n) for n >= 0. (End)
From Andrey Zabolotskiy, Dec 19 2020: (Start)
a(n) = A074033(n) + A074034(n) + 2 * A074035(n).
a(n) = A074448(n) + A074449(n) + 2 * A074450(n).
a(n) = A074406(n) + A074407(n) + A074408(n) + A074409(n). (End)

Extensions

More terms from James Sellers, Apr 19 2000

A053633 Triangular array T(n,k) giving coefficients in expansion of Product_{j=1..n} (1+x^j) mod x^(n+1)-1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 3, 3, 3, 3, 6, 5, 5, 6, 5, 5, 10, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 30, 28, 28, 29, 28, 28, 29, 28, 28, 52, 51, 51, 51, 51, 52, 51, 51, 51, 51, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 172, 170, 170, 172, 170, 170, 172
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2000

Keywords

Comments

T(n,k) = number of binary vectors (x_1,...,x_n) satisfying Sum_{i=1..n} i*x_i = k (mod n+1) = size of Varshamov-Tenengolts code VT_k(n).

Examples

			Triangle begins:
  k  0    1    2    3    4    5    6    7    8    9
n
0    1;
1    1,   1;
2    2,   1,   1;
3    2,   2,   2,   2;
4    4,   3,   3,   3,   3;
5    6,   5,   5,   6,   5,   5;
6   10,   9,   9,   9,   9,   9,   9;
7   16,  16,  16,  16,  16,  16,  16,  16;
8   30,  28,  28,  29,  28,  28,  29,  28,  28;
9   52,  51,  51,  51,  51,  52,  51,  51,  51,  51;
    ...
[Edited by _Seiichi Manyama_, Mar 11 2018]
		

References

  • B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.

Crossrefs

Cf. A053632, A063776, A300328, A300628. Leading coefficients give A000016, next column gives A000048.

Programs

  • Maple
    with(numtheory): A053633 := proc(n,k) local t1,d; t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+(1/(2*n))*2^(n/d)*phi(d)*mobius(d/gcd(d,k))/phi(d/gcd(d,k)); fi; od; t1; end;
  • Mathematica
    Flatten[ Table[ CoefficientList[ PolynomialMod[ Product[1+x^j, {j,1,n}], x^(n+1)-1], x], {n,0,11}]] (* Jean-François Alcover, May 04 2011 *)

Formula

The Maple code gives an explicit formula.

A298983 Triangle read by rows T(n,k) giving coefficients in expansion of Product_{j=1..n} (1-x^j)^2 mod x^(n+1)-1.

Original entry on oeis.org

1, 2, -2, 6, -3, -3, 8, 0, -8, 0, 20, -5, -5, -5, -5, 12, 6, -6, -12, -6, 6, 42, -7, -7, -7, -7, -7, -7, 32, 0, 0, 0, -32, 0, 0, 0, 54, 0, 0, -27, 0, 0, -27, 0, 0, 40, 10, -10, 10, -10, -40, -10, 10, -10, 10, 110, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2018

Keywords

Examples

			Triangle begins:
  k   0    1    2    3    4    5    6
n
0     1;
1     2,  -2;
2     6,  -3,  -3;
3     8,   0,  -8,   0;
4    20,  -5,  -5,  -5,  -5;
5    12,   6,  -6, -12,  -6,   6;
6    42,  -7,  -7,  -7,  -7,  -7,  -7;
		

Crossrefs

Formula

T(n,k) = (n+1) * Sum_{d | gcd(n+1,n+1-k)} d*mu((n+1)/d) for 0 <= k <= n.
So T(n,0) = A002618(n+1) and T(n,n) = A055615(n+1).

A300668 a(n) = A000016(2*n).

Original entry on oeis.org

1, 1, 2, 6, 16, 52, 172, 586, 2048, 7286, 26216, 95326, 349536, 1290556, 4793492, 17895736, 67108864, 252645136, 954437292, 3616814566, 13743895360, 52357696956, 199911205052, 764877654106, 2932031008768, 11258999068468, 43303842570872, 166799986203766, 643371375338656, 2484744621997516
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2018

Keywords

Crossrefs

Cf. A000010 (phi), A000016, A300628.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * 4^(n/#) &, OddQ[#] &] / (4*n); a[0] = 1; Array[a, 30, 0] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, if (d % 2, eulerphi(d)*4^(n/d)))/(4*n));  \\ Michel Marcus, Mar 11 2018

Formula

a(n) = (1/(4*n)) * Sum_{odd d divides n} phi(d)*4^(n/d) for n > 0.
a(n+1) = A300628(n,0).
Showing 1-4 of 4 results.