A298989 Number of partitions of n^4 into fourth powers > 1.
1, 0, 1, 1, 2, 4, 8, 32, 101, 687, 3584, 23564, 146424, 937953, 6006835, 38521889, 247868209, 1591813628, 10234693956, 65662254277, 420757890998, 2688786485779, 17134894394402, 108819902923649, 688544716659489, 4339161392334630, 27229261402800035, 170114849290565556
Offset: 0
Keywords
Examples
a(4) = 2 because we have [256] and [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16].
Links
- Eric Weisstein's World of Mathematics, Biquadratic Number
- Index entries for related partition-counting sequences
Formula
a(n) = [x^(n^4)] Product_{k>=2} 1/(1 - x^(k^4)).
Extensions
a(21)-a(27) from Alois P. Heinz, Apr 18 2019