cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299069 Expansion of Product_{k>=1} (1 + x^k)^phi(k), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 11, 19, 30, 44, 69, 103, 157, 229, 341, 491, 722, 1038, 1488, 2128, 3015, 4267, 5989, 8407, 11713, 16289, 22523, 31097, 42729, 58569, 80003, 108957, 147983, 200383, 270693, 364631, 490105, 656961, 878775, 1172653, 1561626, 2074982, 2751648, 3641536, 4810009, 6341365, 8344967
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(numtheory[phi](i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 09 2018
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 + x^k)^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d EulerPhi[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 46}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000010(k).
a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / (2*Pi^(2/3))) * Zeta(3)^(1/6) / (2^(1/3) * 3^(1/6) * Pi^(5/6) * n^(2/3)). - Vaclav Kotesovec, Mar 23 2018