cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299110 Prime(r) for r such that prime(r) - prime(r-1) = 12 and prime(r-1) - prime(r-2) = 2.

Original entry on oeis.org

211, 631, 673, 1801, 3181, 3271, 3343, 3571, 3943, 4561, 4813, 5431, 6673, 6883, 7321, 7573, 7603, 7963, 8443, 8641, 9643, 9733, 9781, 9871, 10513, 10723, 10903, 11083, 11131, 11731, 11953, 12391, 13411, 14401, 14461, 15373, 15661, 15901, 16843, 17203, 17431, 17761, 17851, 17971, 18301, 18553, 20161, 20521, 20563, 20731
Offset: 1

Views

Author

David James Sycamore, Feb 16 2018

Keywords

Comments

These are the primes of a056240-type 2(12,2); k=2 (see definition in A293652). prime(r-2) is the greatest prime factor of the smallest composite number whose prime divisors (with multiplicity) sum to prime(r).
Conjecture: Sequence has infinitely many terms. Note: p~2(12,2) is just one particular form of a prime of A056240-type k=2; there are others, e.g., 2(18,2), 2(18,4), 2(28,12), 2(24,10). All such prime sequences are also conjectured to produce infinitely many terms.

Examples

			a(1)=211=prime(47), the first prime of type k=2. prime(46)=199 and prime(45)=197; 211-199=12 and 199-197=2.
		

Crossrefs

Programs

  • Maple
    N:=21000:
    for X from 2 to N do
    if isprime(X) then
    A:=prevprime(X);
    B:=prevprime(A);
    a:=X-A;
    b:=A-B;
    if a=12 and b=2 then print(X);
    end if
    end if
    end if
    end do
    # alternative:
    P:= select(isprime, {seq(i,i=3..10^6,2)}):
    Q:= P intersect map(t -> t-12, P) intersect map(t -> t+2, P):
    Q:= remove(t -> ormap(isprime, [seq(t+i,i=2..10,2)]), Q):
    map(t -> t+12, Q); # Robert Israel, Feb 16 2018
  • Mathematica
    Select[Partition[Prime[Range[2500]],3,1],Differences[#]=={2,12}&][[All,3]] (* Harvey P. Dale, Feb 29 2020 *)
  • PARI
    isok(p) =  isprime(p) && (pp=precprime(p-1)) && (p-pp == 12) && (ppp=precprime(pp-1)) && (pp-ppp == 2); \\ Michel Marcus, Feb 16 2018

Formula

For every prime(r) in this sequence A288814(prime(r)) = prime(r-2)*A056240(prime(r) - prime(r-2)) = prime(r-2)*A288814(prime(r) - prime(r-2)).