cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299148 a(n) is the smallest number k such that sigma(k) and sigma(k^n) are both primes.

Original entry on oeis.org

2, 2, 4, 2, 25, 2, 262144, 4, 4, 64, 734449, 2, 3100870943041, 9066121, 4, 2, 729, 2, 214355670008317962105386619478205641151753401, 5041, 64, 16, 25, 10651330026288961, 16610312161, 2607021481, 38950081, 1817762776525603445521, 5331481, 2, 2160067977820518171249529658520145004718584607049, 21203610154988994565561
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

Sequence b(n) of the smallest numbers m such that sigma(m^k) are all primes for k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be bigger than 10^16).
a(n) is of the form p^e where p, e+1 and e*n+1 are primes. e=1 is possible only in the case p=2. - Robert Israel, Feb 06 2018

Examples

			For n = 3; a(3) = 4 because 4 is the smallest number such that sigma(4) = 7 and sigma(4^3) = 127 are both primes.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^k))]): k in [2..12]];
    
  • Maple
    f:= proc(n,Nmin,Nmax) local p, e, M, Res;
      M:= Nmax;
      Res:= -1;
      e:= 0;
      do
        e:= nextprime(e+1)-1;
        if 2^e > M then return Res fi;
        if not isprime(e*n+1) then next fi;
        p:= floor(Nmin^(1/e));
        do
          p:= nextprime(p);
          if p^e > M then break fi;
          if e = 1 and p > 2 then break fi;
          if isprime((p^(e+1)-1)/(p-1)) and isprime((p^(e*n+1)-1)/(p-1)) then
            Res:= p^e;
            M:= p^e;
            break
          fi
        od
      od;
    end proc:
    g:= proc(n) local Nmin,Nmax, v;
      Nmax:= 1;
      do
        Nmin:= Nmax;
        Nmax:= Nmax*10^3;
        v:= f(n,Nmin,Nmax);
        if v > 0 then return v fi;
      od;
    end proc:
    seq(g(n),n=1..50); # Robert Israel, Feb 06 2018
  • Mathematica
    Array[Block[{k = 2}, While[! AllTrue[DivisorSigma[1, #] & /@ {k, k^#}, PrimeQ], k++]; k] &, 10] (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    a(n) = {my(k=1); while (!(isprime(sigma(k)) && isprime(sigma(k^n))), k++); k;} \\ Michel Marcus, Feb 05 2018

Formula

a(n) >= A279094(n).

Extensions

a(13) to a(32) from Robert Israel, Feb 06 2018