cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299153 Numbers k such that sigma(k) and sigma(k^3) are both primes.

Original entry on oeis.org

4, 9, 16, 25, 64, 289, 2401, 7921, 3418801, 19439281, 24730729, 40819321, 52258441, 67848169, 75151561, 76405081, 142396489, 175006441, 185313769, 198443569, 253541929, 352425529, 369062521, 386554921, 414896161, 499477801, 526105969, 684921241, 775678201
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

Intersection of A023194 and A279096.
All terms are squares.

Examples

			4 is in the sequence because sigma(4) = 7 and sigma(4^2) = 31 are both primes.
		

Crossrefs

Cf. A000203 (sigma(n)), A055638 (sigma(n^2) is prime), A232444 (sigma(n) and sigma(n^2) are primes), A279094 (the smallest k such that sigma(k^n) is prime), A279096 (sigma(n^3) is prime), A299147 (sigma(n), sigma(n^2) and sigma(n^3) are primes).

Programs

  • Magma
    [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^3))];
    
  • Mathematica
    Select[Range[10^4], AllTrue[DivisorSigma[1, #] & /@ {#, #^3}, PrimeQ] &] (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018