A299200 Number of twice-partitions whose domain is the integer partition with Heinz number n.
1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 15, 4, 22, 3, 10, 7, 30, 2, 9, 11, 8, 5, 42, 6, 56, 1, 14, 15, 15, 4, 77, 22, 22, 3, 101, 10, 135, 7, 12, 30, 176, 2, 25, 9, 30, 11, 231, 8, 21, 5, 44, 42, 297, 6, 385, 56, 20, 1, 33, 14, 490, 15, 60, 15, 627, 4
Offset: 1
Examples
The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): with(combinat): a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]): seq(a(n), n=1..82); # Alois P. Heinz, Jan 14 2021
-
Mathematica
Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsP[PrimePi[p]]^k],{n,100}]
-
PARI
a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1]));); factorback(f);} \\ Michel Marcus, Feb 26 2018
Formula
Multiplicative with a(prime(n)) = A000041(n).
Comments