A299268 Coordination sequence for "crs" 3D uniform tiling formed from tetrahedra and truncated tetrahedra.
1, 6, 18, 48, 78, 126, 182, 240, 330, 390, 522, 576, 758, 798, 1038, 1056, 1362, 1350, 1730, 1680, 2142, 2046, 2598, 2448, 3098, 2886, 3642, 3360, 4230, 3870, 4862, 4416, 5538, 4998, 6258, 5616, 7022, 6270, 7830, 6960, 8682, 7686, 9578, 8448, 10518, 9246
Offset: 0
References
- B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #6.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Reticular Chemistry Structure Resource (RCSR), The crs tiling (or net)
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Crossrefs
See A299269 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Magma
I:=[18, 48, 78, 126, 182, 240, 330]; [1,6] cat [n le 6 select I[n] else 3*Self(n-2) -3*Self(n-4) + Self(n-6): n in [1..30]]; // G. C. Greubel, Feb 20 2018
-
Mathematica
CoefficientList[Series[(x^6+27*x^4+30*x^3+15*x^2+6*x+1)/(1-x^2)^3, {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
-
PARI
Vec((1 + 6*x + 15*x^2 + 30*x^3 + 27*x^4 + x^6) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 09 2018
Formula
G.f.: (x^6 + 27*x^4 + 30*x^3 + 15*x^2 + 6*x + 1) / (1 - x^2)^3.
From Colin Barker, Feb 09 2018: (Start)
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = (11*n^2 - 6*n + 4) / 2 for n>0 and even.
a(n) = 3 * (3*n^2 + 2*n - 1) / 2 for n odd. (End)
E.g.f.: ((11*x^2 + 15*x + 4)*cosh(x) + (9*x^2 + 5*x - 3)*sinh(x) - 2)/2. - Stefano Spezia, Mar 14 2024
Comments