cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299268 Coordination sequence for "crs" 3D uniform tiling formed from tetrahedra and truncated tetrahedra.

Original entry on oeis.org

1, 6, 18, 48, 78, 126, 182, 240, 330, 390, 522, 576, 758, 798, 1038, 1056, 1362, 1350, 1730, 1680, 2142, 2046, 2598, 2448, 3098, 2886, 3642, 3360, 4230, 3870, 4862, 4416, 5538, 4998, 6258, 5616, 7022, 6270, 7830, 6960, 8682, 7686, 9578, 8448, 10518, 9246
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #6.

Crossrefs

See A299269 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    I:=[18, 48, 78, 126, 182, 240, 330]; [1,6] cat [n le 6 select I[n] else 3*Self(n-2) -3*Self(n-4) + Self(n-6): n in [1..30]]; // G. C. Greubel, Feb 20 2018
  • Mathematica
    CoefficientList[Series[(x^6+27*x^4+30*x^3+15*x^2+6*x+1)/(1-x^2)^3, {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
  • PARI
    Vec((1 + 6*x + 15*x^2 + 30*x^3 + 27*x^4 + x^6) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 09 2018
    

Formula

G.f.: (x^6 + 27*x^4 + 30*x^3 + 15*x^2 + 6*x + 1) / (1 - x^2)^3.
From Colin Barker, Feb 09 2018: (Start)
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = (11*n^2 - 6*n + 4) / 2 for n>0 and even.
a(n) = 3 * (3*n^2 + 2*n - 1) / 2 for n odd. (End)
E.g.f.: ((11*x^2 + 15*x + 4)*cosh(x) + (9*x^2 + 5*x - 3)*sinh(x) - 2)/2. - Stefano Spezia, Mar 14 2024