A299471 Regular triangle where T(n,k) is the number of labeled k-uniform hypergraphs spanning n vertices.
1, 1, 1, 1, 4, 1, 1, 41, 11, 1, 1, 768, 958, 26, 1, 1, 27449, 1042642, 32596, 57, 1, 1, 1887284, 34352419335, 34359509614, 2096731, 120, 1, 1, 252522481, 72057319189324805, 1180591620442534312297, 72057594021152435, 268434467, 247, 1, 1, 66376424160
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 41, 11, 1; 1, 768, 958, 26, 1; 1, 27449, 1042642, 32596, 57, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..91 (rows 1..13)
- Wikipedia, Hypergraph
Crossrefs
Programs
-
Mathematica
Table[Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,10},{k,n}]
-
PARI
T(n, k) = sum(d = 0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)) \\ Andrew Howroyd, Jan 16 2024
Formula
T(n, k) = Sum_{d = 0..n} (-1)^(n-d)*binomial(n,d)*2^binomial(d,k).