cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size.

Original entry on oeis.org

1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024

Examples

			The a(3) = 6 set-systems in which all sets have the same size:
  {{1,2,3}}
  {{1}, {2}, {3}}
  {{1,2}, {1,3}}
  {{1,2}, {2,3}}
  {{1,3}, {2,3}}
  {{1,2}, {1,3}, {2,3}}
		

Crossrefs

Row sums of A299471.
The unlabeled version is A301481.
The connected version is A299353.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024

A000665 Number of 3-uniform hypergraphs on n unlabeled nodes, or equivalently number of relations with 3 arguments on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 34, 2136, 7013320, 1788782616656, 53304527811667897248, 366299663432194332594005123072, 1171638318502989084030402509596875836036608, 3517726593606526072882013063011594224625680712384971214848
Offset: 0

Views

Author

Keywords

Comments

The Qian reference has one incorrect term. The formula given in corollary 2.6 also contains a minor error. The second summation needs to be over p_i*p_j*p_h/lcm(p_i, p_j, p_h) rather than gcd(p_i, p_j, p_h)^2. - Andrew Howroyd, Dec 11 2018

Examples

			From _Gus Wiseman_, Dec 13 2018: (Start)
Non-isomorphic representatives of the a(5) = 34 hypergraphs:
  {}
  {{123}}
  {{125}{345}}
  {{134}{234}}
  {{123}{245}{345}}
  {{124}{134}{234}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{124}{134}{234}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A092337. Spanning 3-uniform hypergraphs are counted by A322451.
Column k=3 of A309858.

Programs

  • Mathematica
    (* about 85 seconds on a laptop computer *)
    Needs["Combinatorica`"];Table[A = Subsets[Range[n],{3}];CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /. Table[s[i] -> 2, {i, 1, Binomial[n, 3]}], {n, 1, 8}] (* Geoffrey Critzer, Oct 28 2015 *)
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{3}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,8}] (* Gus Wiseman, Dec 13 2018 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[p_] := Sum[Ceiling[(p[[i]] - 1)*((p[[i]] - 2)/6)], {i, 1, Length[p]}] + Sum[Sum[c = p[[i]]; d = p[[j]]; GCD[c, d]*(c + d - 2 + Mod[(c - d)/GCD[c, d], 2])/2 + Sum[c*d*p[[k]]/LCM[c, d, p[[k]]], {k, 1, j - 1}], {j, 1, i - 1}], {i, 2, Length[p]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[0, 12] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(p)={sum(i=1, #p, ceil((p[i]-1)*(p[i]-2)/6)) + sum(i=2, #p, sum(j=1, i-1, my(c=p[i], d=p[j]); gcd(c,d)*(c + d - 2 + (c-d)/gcd(c,d)%2)/2 + sum(k=1, j-1, c*d*p[k]/lcm(lcm(c,d), p[k]))))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Dec 11 2018

Extensions

Corrected and extended by Vladeta Jovovic
a(0)=1 prepended and a(12) from Andrew Howroyd, Dec 11 2018

A302374 Number of families of 3-subsets of an n-set that cover every element.

Original entry on oeis.org

1, 0, 0, 1, 11, 958, 1042642, 34352419335, 72057319189324805, 19342812465316957316575404, 1329227995591487745008054001085455444, 46768052394574271874565344427028486133322470597757, 1684996666696914425950059707959735374604894792118382485311245761903
Offset: 0

Views

Author

Brendan McKay, Apr 07 2018

Keywords

Comments

Number of simple 3-uniform hypergraphs without isolated vertices.

Examples

			For n=3, all families with at least two 3-subsets will cover every element.
		

Crossrefs

Column 3 of A299471.
Cf. A302394.

Programs

  • GAP
    Flat(List([0..12],n->Sum([0..n],k->(-1)^k*Binomial(n,k)*2^Binomial(n-k,3)))); # Muniru A Asiru, Apr 07 2018
  • Maple
    seq(add((-1)^k * binomial(n,k) * 2^binomial(n-k,3), k = 0..n), n=0..15);
  • Mathematica
    Array[Sum[(-1)^k*Binomial[#, k] 2^Binomial[# - k, 3], {k, 0, #}] &, 13, 0] (* Michael De Vlieger, Apr 07 2018 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n,k)*2^binomial(n-k,3)); \\ Michel Marcus, Apr 07 2018
    

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * 2^binomial(n-k,3).

A299353 Number of labeled connected uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 5, 50, 1713, 1101990, 68715891672, 1180735735356264714926, 170141183460507906731293351306487161569, 7237005577335553223087828975127304177495735363998991435497132228228565768846
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.
Let T be the regular triangle A299354, where column k is the logarithmic transform of the inverse binomial transform of c(d) = 2^binomial(d,k). Then a(n) is the sum of row n.

Examples

			The a(3) = 5 hypergraphs:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[Sum[SeriesCoefficient[Log[Sum[x^m/m!*(-1)^(m-d)*Binomial[m,d]*2^Binomial[d,k],{m,0,n},{d,0,m}]],{x,0,n}]*n!,{k,n}],{n,nn}]

A301922 Regular triangle where T(n,k) is the number of unlabeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 23, 29, 4, 1, 1, 122, 2102, 150, 5, 1, 1, 888, 7011184, 7013164, 1037, 6, 1, 1, 11302, 1788775603336, 29281354507753848, 1788782615612, 12338, 7, 1, 1, 262322, 53304526022885280592, 234431745534048893449761040648512, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2   1
   1   7   3   1
   1  23  29   4   1
The T(4,2) = 7 hypergraphs:
  {{1,2},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301481. Second column is A002494.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    A:= proc(n, k) A(n, k):= `if`(k>n-k, A(n, n-k), b(n$2, [], k)) end:
    T:= (n, k)-> A(n, k)-A(n-1, k):
    seq(seq(T(n, k), k=1..n), n=1..9);  # Alois P. Heinz, Aug 21 2019
  • PARI
    permcount(v)={my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L,k); while(#L0, u=vecsort(apply(f, u)); d=lex(u,v)); !d}
    Q(n,k,perm)={my(t=0); forsubset([n,k], v, t += can(Vec(v), t->perm[t])); t}
    U(n,k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n,k,rep(p))); s/n!}
    for(n=1, 10, for(k=1, n, print1(U(n,k)-U(n-1,k), ", ")); print) \\ Andrew Howroyd, Aug 10 2019

Formula

T(n,k) = A309858(n,k) - A309858(n-1,k). - Alois P. Heinz, Aug 21 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 09 2019

A322451 Number of unlabeled 3-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 0, 1, 3, 29, 2102, 7011184, 1788775603336, 53304526022885280592, 366299663378889804782337225824, 1171638318502622784366970315264281830913536, 3517726593606524901243694560022510194223171115509135178240
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

3-uniform means that every edge consists of 3 vertices. - Brendan McKay, Sep 03 2023

Examples

			Non-isomorphic representatives of the a(5) = 29 hypergraphs:
  {{125}{345}}
  {{123}{245}{345}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
		

Crossrefs

Extensions

a(12) from Andrew Howroyd, Dec 15 2018
Name corrected by Brendan McKay, Sep 03 2023

A289837 Number of cliques in the n-tetrahedral graph.

Original entry on oeis.org

1, 1, 2, 16, 76, 261, 757, 2003, 5035, 12286, 29426, 69554, 162670, 376923, 865971, 1973941, 4466853, 10040524, 22430584, 49829116, 110127536, 242254321, 530619937, 1157676711, 2516640751, 5452664426, 11777687182, 25367246038, 54492508610, 116769551831
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2017

Keywords

Comments

Here, "cliques" means complete subgraphs (not necessarily the largest).
Sequence extended to a(1) using formula. - Andrew Howroyd, Jul 18 2017
From Gus Wiseman, Jan 11 2019: (Start)
The n-tetrahedral graph has all 3-subsets of {1,...,n} as vertices, and two are connected iff they share two elements. So a(n) is the number of 3-uniform hypergraphs on n labeled vertices where every two edges have two vertices in common. For example, the a(4) = 16 hypergraphs are:
{}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3},{1,2,4}}
{{1,2,3},{1,3,4}}
{{1,2,3},{2,3,4}}
{{1,2,4},{1,3,4}}
{{1,2,4},{2,3,4}}
{{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4}}
{{1,2,3},{1,2,4},{2,3,4}}
{{1,2,3},{1,3,4},{2,3,4}}
{{1,2,4},{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 7 unlabeled 3-uniform cliques on 6 vertices, and their multiplicities in the labeled case, which add up to a(6) = 261.
1 X {}
20 X {{1,2,3}}
90 X {{1,3,4},{2,3,4}}
60 X {{1,4,5},{2,4,5},{3,4,5}}
60 X {{1,2,4},{1,3,4},{2,3,4}}
15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
(End)

Crossrefs

Cf. A055795 (maximal cliques), A287232 (independent vertex sets), A290056 (triangular graph).

Programs

  • Mathematica
    Table[(2^(n - 2) - n + 1) Binomial[n, 2] + Binomial[n, 3] +
      5 Binomial[n, 4] + 1, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
    LinearRecurrence[{11, -52, 138, -225, 231, -146, 52, -8}, {1, 1, 2, 16, 76, 261, 757, 2003}, 20] (* Eric W. Weisstein, Jul 21 2017 *)
    CoefficientList[Series[(1 - 10 x + 43 x^2 - 92 x^3 + 91 x^4 - 25 x^5 - 5 x^6 - 8 x^7)/((-1 + x)^5 (-1 + 2 x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 21 2017 *)
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&]],{n,6}] (* Gus Wiseman, Jan 11 2019 *)
  • PARI
    a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4); \\ Andrew Howroyd, Jul 18 2017
    
  • PARI
    Vec(x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Jul 19 2017

Formula

a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4). - Andrew Howroyd, Jul 18 2017
a(n) = 11*a(n-1)-52*a(n-2)+138*a(n-3)-225*a(n-4)+231*a(n-5)-146*a(n-6)+52*a(n-7)-8*a(n-8). - Eric W. Weisstein, Jul 21 2017
From Colin Barker, Jul 19 2017: (Start)
G.f.: x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3).
a(n) = (24 - (34+3*2^n)*n + (67+3*2^n)*n^2 - 38*n^3 + 5*n^4) / 24.
(End)
Binomial transform of A323294. - Gus Wiseman, Jan 11 2019

Extensions

a(1)-a(5) and a(21)-a(30) from Andrew Howroyd, Jul 18 2017

A323296 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 25, 406, 4823, 15436, 72915, 895180, 11320441, 71777498, 519354927, 6155284240, 82292879425, 788821735656, 7772567489083, 98329764933354, 1400924444610675, 17424772471470490, 216091776292721021, 3035845122991962688, 46700545575567202903
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to meet the requirements is to cover the vertices with zero or more disconnected 3-uniform hypergraphs with each edge having exactly two vertices in common (A323294). - Andrew Howroyd, Aug 18 2019

Examples

			The a(4) = 11:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 7 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 406.
  210 X {{1,2,3},{4,6,7},{5,6,7}}
  140 X {{1,2,3},{4,5,7},{4,6,7},{5,6,7}}
   21 X {{1,6,7},{2,6,7},{3,6,7},{4,6,7},{5,6,7}}
   35 X {{1,2,3},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
		

Crossrefs

Programs

  • Maple
    b:= n-> `if`(n<5, (n-2)*(2*n^2-6*n+3)/6, n/2)*(n-1):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, k-1)*b(k)*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&],Union@@#==Range[n]&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

From Andrew Howroyd, Aug 18 2019: (Start)
Exponential transform of A323294.
E.g.f.: exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). (End)

Extensions

a(11) from Alois P. Heinz, Aug 12 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A323299 Number of 3-uniform hypergraphs on n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 261, 3216, 19617, 80860, 262651, 737716, 1920821, 5013152, 14277485, 47610876, 186355041, 820625616, 3869589607, 19039193980, 96332399701, 499138921736, 2639262062801, 14234781051932, 78188865206145, 437305612997376, 2487692697142251
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
The following are non-isomorphic representatives of the 10 unlabeled 3-uniform hypergraphs on 7 vertices where every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 3216.
    1 X {}
   35 X {{1,2,3}}
  315 X {{1,2,5},{3,4,5}}
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,3,5},{2,3,6},{4,5,6}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&]],{n,8}]

Formula

Binomial transform of A323298.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 14 2019

A299354 Regular triangle where T(n,k) is the number of labeled connected k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 0, 38, 11, 1, 0, 728, 958, 26, 1, 0, 26704, 1042632, 32596, 57, 1, 0, 1866256, 34352418950, 34359509614, 2096731, 120, 1, 0, 251548592, 72057319189266922, 1180591620442534312262, 72057594021152435, 268434467, 247, 1, 0, 66296291072
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
1
0, 1
0, 4, 1
0, 38, 11, 1
0, 728, 958, 26, 1
0, 26704, 1042632, 32596, 57, 1
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[SeriesCoefficient[Log[Sum[x^n/n!*Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,0,nn}]],{x,0,n}]*n!,{n,nn},{k,n}]

Formula

Column k is the logarithmic transform of the inverse binomial transform of c(d) = 2^binomial(d,k).
Showing 1-10 of 16 results. Next