cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A000665 Number of 3-uniform hypergraphs on n unlabeled nodes, or equivalently number of relations with 3 arguments on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 34, 2136, 7013320, 1788782616656, 53304527811667897248, 366299663432194332594005123072, 1171638318502989084030402509596875836036608, 3517726593606526072882013063011594224625680712384971214848
Offset: 0

Views

Author

Keywords

Comments

The Qian reference has one incorrect term. The formula given in corollary 2.6 also contains a minor error. The second summation needs to be over p_i*p_j*p_h/lcm(p_i, p_j, p_h) rather than gcd(p_i, p_j, p_h)^2. - Andrew Howroyd, Dec 11 2018

Examples

			From _Gus Wiseman_, Dec 13 2018: (Start)
Non-isomorphic representatives of the a(5) = 34 hypergraphs:
  {}
  {{123}}
  {{125}{345}}
  {{134}{234}}
  {{123}{245}{345}}
  {{124}{134}{234}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{124}{134}{234}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A092337. Spanning 3-uniform hypergraphs are counted by A322451.
Column k=3 of A309858.

Programs

  • Mathematica
    (* about 85 seconds on a laptop computer *)
    Needs["Combinatorica`"];Table[A = Subsets[Range[n],{3}];CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /. Table[s[i] -> 2, {i, 1, Binomial[n, 3]}], {n, 1, 8}] (* Geoffrey Critzer, Oct 28 2015 *)
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{3}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,8}] (* Gus Wiseman, Dec 13 2018 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[p_] := Sum[Ceiling[(p[[i]] - 1)*((p[[i]] - 2)/6)], {i, 1, Length[p]}] + Sum[Sum[c = p[[i]]; d = p[[j]]; GCD[c, d]*(c + d - 2 + Mod[(c - d)/GCD[c, d], 2])/2 + Sum[c*d*p[[k]]/LCM[c, d, p[[k]]], {k, 1, j - 1}], {j, 1, i - 1}], {i, 2, Length[p]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[0, 12] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(p)={sum(i=1, #p, ceil((p[i]-1)*(p[i]-2)/6)) + sum(i=2, #p, sum(j=1, i-1, my(c=p[i], d=p[j]); gcd(c,d)*(c + d - 2 + (c-d)/gcd(c,d)%2)/2 + sum(k=1, j-1, c*d*p[k]/lcm(lcm(c,d), p[k]))))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Dec 11 2018

Extensions

Corrected and extended by Vladeta Jovovic
a(0)=1 prepended and a(12) from Andrew Howroyd, Dec 11 2018

A289837 Number of cliques in the n-tetrahedral graph.

Original entry on oeis.org

1, 1, 2, 16, 76, 261, 757, 2003, 5035, 12286, 29426, 69554, 162670, 376923, 865971, 1973941, 4466853, 10040524, 22430584, 49829116, 110127536, 242254321, 530619937, 1157676711, 2516640751, 5452664426, 11777687182, 25367246038, 54492508610, 116769551831
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2017

Keywords

Comments

Here, "cliques" means complete subgraphs (not necessarily the largest).
Sequence extended to a(1) using formula. - Andrew Howroyd, Jul 18 2017
From Gus Wiseman, Jan 11 2019: (Start)
The n-tetrahedral graph has all 3-subsets of {1,...,n} as vertices, and two are connected iff they share two elements. So a(n) is the number of 3-uniform hypergraphs on n labeled vertices where every two edges have two vertices in common. For example, the a(4) = 16 hypergraphs are:
{}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3},{1,2,4}}
{{1,2,3},{1,3,4}}
{{1,2,3},{2,3,4}}
{{1,2,4},{1,3,4}}
{{1,2,4},{2,3,4}}
{{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4}}
{{1,2,3},{1,2,4},{2,3,4}}
{{1,2,3},{1,3,4},{2,3,4}}
{{1,2,4},{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 7 unlabeled 3-uniform cliques on 6 vertices, and their multiplicities in the labeled case, which add up to a(6) = 261.
1 X {}
20 X {{1,2,3}}
90 X {{1,3,4},{2,3,4}}
60 X {{1,4,5},{2,4,5},{3,4,5}}
60 X {{1,2,4},{1,3,4},{2,3,4}}
15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
(End)

Crossrefs

Cf. A055795 (maximal cliques), A287232 (independent vertex sets), A290056 (triangular graph).

Programs

  • Mathematica
    Table[(2^(n - 2) - n + 1) Binomial[n, 2] + Binomial[n, 3] +
      5 Binomial[n, 4] + 1, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
    LinearRecurrence[{11, -52, 138, -225, 231, -146, 52, -8}, {1, 1, 2, 16, 76, 261, 757, 2003}, 20] (* Eric W. Weisstein, Jul 21 2017 *)
    CoefficientList[Series[(1 - 10 x + 43 x^2 - 92 x^3 + 91 x^4 - 25 x^5 - 5 x^6 - 8 x^7)/((-1 + x)^5 (-1 + 2 x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 21 2017 *)
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&]],{n,6}] (* Gus Wiseman, Jan 11 2019 *)
  • PARI
    a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4); \\ Andrew Howroyd, Jul 18 2017
    
  • PARI
    Vec(x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Jul 19 2017

Formula

a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4). - Andrew Howroyd, Jul 18 2017
a(n) = 11*a(n-1)-52*a(n-2)+138*a(n-3)-225*a(n-4)+231*a(n-5)-146*a(n-6)+52*a(n-7)-8*a(n-8). - Eric W. Weisstein, Jul 21 2017
From Colin Barker, Jul 19 2017: (Start)
G.f.: x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3).
a(n) = (24 - (34+3*2^n)*n + (67+3*2^n)*n^2 - 38*n^3 + 5*n^4) / 24.
(End)
Binomial transform of A323294. - Gus Wiseman, Jan 11 2019

Extensions

a(1)-a(5) and a(21)-a(30) from Andrew Howroyd, Jul 18 2017

A320395 Number of non-isomorphic 3-uniform multiset systems over {1,...,n}.

Original entry on oeis.org

1, 2, 10, 208, 45960, 287800704, 100103176111616, 3837878984050795692032, 32966965900633495618246298767360, 128880214965936601447070466061615999984402432, 464339910355487357558396669850788946402420533504952464572416
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2018

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 10 multiset systems:
  {}
  {{111}}
  {{122}}
  {{111}{222}}
  {{112}{122}}
  {{112}{222}}
  {{122}{222}}
  {{111}{122}{222}}
  {{112}{122}{222}}
  {{111}{112}{122}{222}}
		

Crossrefs

The 2-uniform case is A000666. The case of sets (as opposed to multisets) is A000665. The case of labeled spanning sets is A302374, with unlabeled case A322451.

Programs

  • Mathematica
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],3],OrderedQ]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,6}]
  • PARI
    permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
    Q(perm)={my(t=0); forsubset([#perm+2, 3], v, t += can([v[1],v[2]-1,v[3]-2], t->perm[t])); t}
    a(n)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(rep(p))); s/n!} \\ Andrew Howroyd, Aug 26 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Aug 26 2019

A323293 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 271, 5596, 231577, 21286940, 4392750641, 2100400533176
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 6 unlabeled 3-uniform hypertrees spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 271:
    1 X {}
   20 X {{1,2,3}}
   90 X {{1,2,5},{3,4,5}}
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>1&]],{n,8}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019
a(10) and a(11) (using A287232) from Joerg Arndt, Oct 12 2023

A323296 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 25, 406, 4823, 15436, 72915, 895180, 11320441, 71777498, 519354927, 6155284240, 82292879425, 788821735656, 7772567489083, 98329764933354, 1400924444610675, 17424772471470490, 216091776292721021, 3035845122991962688, 46700545575567202903
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to meet the requirements is to cover the vertices with zero or more disconnected 3-uniform hypergraphs with each edge having exactly two vertices in common (A323294). - Andrew Howroyd, Aug 18 2019

Examples

			The a(4) = 11:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 7 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 406.
  210 X {{1,2,3},{4,6,7},{5,6,7}}
  140 X {{1,2,3},{4,5,7},{4,6,7},{5,6,7}}
   21 X {{1,6,7},{2,6,7},{3,6,7},{4,6,7},{5,6,7}}
   35 X {{1,2,3},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
		

Crossrefs

Programs

  • Maple
    b:= n-> `if`(n<5, (n-2)*(2*n^2-6*n+3)/6, n/2)*(n-1):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, k-1)*b(k)*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&],Union@@#==Range[n]&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

From Andrew Howroyd, Aug 18 2019: (Start)
Exponential transform of A323294.
E.g.f.: exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). (End)

Extensions

a(11) from Alois P. Heinz, Aug 12 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A323299 Number of 3-uniform hypergraphs on n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 261, 3216, 19617, 80860, 262651, 737716, 1920821, 5013152, 14277485, 47610876, 186355041, 820625616, 3869589607, 19039193980, 96332399701, 499138921736, 2639262062801, 14234781051932, 78188865206145, 437305612997376, 2487692697142251
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
The following are non-isomorphic representatives of the 10 unlabeled 3-uniform hypergraphs on 7 vertices where every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 3216.
    1 X {}
   35 X {{1,2,3}}
  315 X {{1,2,5},{3,4,5}}
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,3,5},{2,3,6},{4,5,6}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&]],{n,8}]

Formula

Binomial transform of A323298.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 14 2019

A319540 Number of unlabeled 3-uniform hypergraphs spanning n vertices such that every pair of vertices appears together in some block.

Original entry on oeis.org

1, 1, 0, 1, 2, 14, 964, 3908438
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 14 hypergraphs:
              {{123}{145}{245}{345}}
            {{123}{124}{135}{245}{345}}
            {{123}{145}{235}{245}{345}}
          {{123}{134}{145}{235}{245}{345}}
          {{123}{145}{234}{235}{245}{345}}
          {{124}{135}{145}{235}{245}{345}}
          {{125}{135}{145}{235}{245}{345}}
        {{123}{124}{135}{145}{235}{245}{345}}
        {{124}{135}{145}{234}{235}{245}{345}}
        {{125}{135}{145}{234}{235}{245}{345}}
      {{123}{124}{135}{145}{234}{235}{245}{345}}
      {{125}{134}{135}{145}{234}{235}{245}{345}}
    {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
		

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Aug 17 2019

A323292 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 160, 4125, 193200, 19384225
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 15 hypergraphs:
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>=2&],Union@@#==Range[n]&]],{n,6}]

Formula

Inverse binomial transform of A323293. - Andrew Howroyd, Aug 14 2019

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A323294 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(4) = 11 hypergraphs:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    seq(n)={Vec(serlaplace(1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2))} \\ Andrew Howroyd, Aug 18 2019

Formula

a(n) = binomial(n,2) for n >= 5. - Gus Wiseman, Jan 16 2019
Binomial transform is A289837. - Gus Wiseman, Jan 16 2019
a(n) = A000217(n-1) for n >= 5. - Alois P. Heinz, Jan 24 2019
E.g.f.: 1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2. - Andrew Howroyd, Aug 18 2019

A323298 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 150, 1815, 0, 945, 0, 10395, 0, 135135, 0, 2027025, 0, 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, 7905853580625, 0, 213458046676875, 0, 6190283353629375, 0, 191898783962510625, 0, 6332659870762850625, 0, 221643095476699771875
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to cover more than 7 vertices is with edges all having a single common vertex. For the special cases of n = 6 or n = 7, there are also covers without a common vertex. - Andrew Howroyd, Aug 15 2019

Examples

			The a(5) = 15 hypergraphs:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
The following are non-isomorphic representatives of the 5 unlabeled 3-uniform hypergraphs spanning 7 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 1815.
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
From _Andrew Howroyd_, Aug 15 2019: (Start)
The following are non-isomorphic representatives of the 2 unlabeled 3-uniform hypergraphs spanning 6 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 150.
    120 X {{1,2,3},{1,4,5},{3,5,6}}
     30 X {{1,2,3},{1,4,5},{3,5,6},{2,4,6}}
(End)
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    a(n)={if(n%2, if(n<=3, n==3, if(n==7, 1815, n!/(2^(n\2)*(n\2)!))), if(n==6, 150, n==0))} \\ Andrew Howroyd, Aug 15 2019

Formula

a(2*n) = 0 for n > 3; a(2*n-1) = A001147(n) for n > 4. - Andrew Howroyd, Aug 15 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 15 2019
Showing 1-10 of 12 results. Next