A306021
Number of set-systems spanning {1,...,n} in which all sets have the same size.
Original entry on oeis.org
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0
The a(3) = 6 set-systems in which all sets have the same size:
{{1,2,3}}
{{1}, {2}, {3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,3}, {2,3}}
Cf.
A000005,
A001315,
A007716,
A038041,
A049311,
A283877,
A298422,
A306017,
A306018,
A306019,
A306020.
-
Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
-
a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024
A295193
Number of regular simple graphs on n labeled nodes.
Original entry on oeis.org
1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
Offset: 1
From _Gus Wiseman_, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
1 2
3 4
.
4---1 3---1 2---1
3---2 4---2 4---3
.
3---4 4---3 4---2
| | | | | |
1---2 1---2 1---3
.
4---3
| X |
2---1
(End)
- Andrew Howroyd, Table of n, a(n) for n = 1..24
- E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs with given degree sequences, Journal of Combinatorial Theory, Series A, 24 (1978), 296-307.
- Andrew Howroyd, PARI Program
- Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
- B. D. McKay, Applications of a technique for labelled enumeration, Congress. Numerantium, 40 (1983), 207-221.
- Wikipedia, Regular graph
-
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,9}] (* Gus Wiseman, Dec 19 2018 *)
-
\\ See link for program file.
for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019
A319189
Number of uniform regular hypergraphs spanning n vertices.
Original entry on oeis.org
1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0
The a(4) = 10 edge-sets:
{{1,2,3,4}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1},{2},{3},{4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
[1 1 1 1]
.
[1 1 0 0] [1 0 1 0] [1 0 0 1]
[0 0 1 1] [0 1 0 1] [0 1 1 0]
.
[1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
[0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
[0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
[0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
[1 1 0 0]
[1 0 1 0]
[1 0 0 1]
[0 1 1 0]
[0 1 0 1]
[0 0 1 1]
Uniform hypergraphs are counted by
A306021. Unlabeled uniform regular multiset partitions are counted by
A319056. Regular graphs are
A295193. Uniform clutters are
A299353.
-
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]
A322635
Number of regular graphs with loops on n labeled vertices.
Original entry on oeis.org
2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
Offset: 1
Cf.
A000666,
A054921,
A059441,
A295193,
A299353,
A306017,
A306021,
A319189,
A319190,
A319612,
A322659,
A322661.
-
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2n}],{n,6}]
-
for(n=1, 10, print1(A322635(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019
A322785
Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.
Original entry on oeis.org
1, 1, 4, 4, 12, 4, 48, 4, 183, 297, 1186, 4, 33950, 4, 139527, 1529608, 4726356, 4, 229255536, 4, 3705777010, 36279746314, 13764663019, 4, 14096735197959, 5194673049514, 7907992957755, 2977586461058927, 13426396910491001, 4, 1350012288268171854, 4, 59487352224070807287
Offset: 0
The a(1) = 1 though a(6) = 48 multiset partitions:
{1} {11} {111} {1111} {11111} {111111}
{12} {123} {1122} {12345} {111222}
{1}{1} {1}{1}{1} {1234} {1}{1}{1}{1}{1} {112233}
{1}{2} {1}{2}{3} {11}{11} {1}{2}{3}{4}{5} {123456}
{11}{22} {111}{111}
{12}{12} {111}{222}
{12}{34} {112}{122}
{13}{24} {112}{233}
{14}{23} {113}{223}
{1}{1}{1}{1} {122}{133}
{1}{1}{2}{2} {123}{123}
{1}{2}{3}{4} {123}{456}
{124}{356}
{125}{346}
{126}{345}
{134}{256}
{135}{246}
{136}{245}
{145}{236}
{146}{235}
{156}{234}
{11}{11}{11}
{11}{12}{22}
{11}{22}{33}
{11}{23}{23}
{12}{12}{12}
{12}{12}{33}
{12}{13}{23}
{12}{34}{56}
{12}{35}{46}
{12}{36}{45}
{13}{13}{22}
{13}{24}{56}
{13}{25}{46}
{13}{26}{45}
{14}{23}{56}
{14}{25}{36}
{14}{26}{35}
{15}{23}{46}
{15}{24}{36}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
{1}{1}{1}{1}{1}{1}
{1}{1}{1}{2}{2}{2}
{1}{1}{2}{2}{3}{3}
{1}{2}{3}{4}{5}{6}
Cf.
A000040,
A038041,
A072774,
A100778,
A299353,
A306017,
A306018,
A306021,
A317583,
A317584,
A319056,
A319189,
A321721,
A322705,
A322784,
A322788.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Sum[Length[Select[mps[m],SameQ@@Length/@#&]],{m,Table[Join@@Table[Range[n/d],{d}],{d,Divisors[n]}]}],{n,8}]
A301920
Number of unlabeled uniform connected hypergraphs spanning n vertices.
Original entry on oeis.org
1, 1, 1, 3, 10, 55, 2369, 14026242, 29284932065996223, 468863491068204425232922367146585, 1994324729204021501147398087008429476673379600542622915802043455294332
Offset: 0
Non-isomorphic representatives of the a(4) = 10 hypergraphs:
{{1,2,3,4}}
{{1,3,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,4},{2,3},{2,4},{3,4}}
{{1,3},{1,4},{2,3},{2,4},{3,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
A299354
Regular triangle where T(n,k) is the number of labeled connected k-uniform hypergraphs spanning n vertices.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 38, 11, 1, 0, 728, 958, 26, 1, 0, 26704, 1042632, 32596, 57, 1, 0, 1866256, 34352418950, 34359509614, 2096731, 120, 1, 0, 251548592, 72057319189266922, 1180591620442534312262, 72057594021152435, 268434467, 247, 1, 0, 66296291072
Offset: 1
Triangle begins:
1
0, 1
0, 4, 1
0, 38, 11, 1
0, 728, 958, 26, 1
0, 26704, 1042632, 32596, 57, 1
Cf.
A000005,
A001315,
A006126,
A006129,
A038041,
A048143,
A298422,
A299353,
A299471,
A306020,
A306021.
-
nn=10;Table[SeriesCoefficient[Log[Sum[x^n/n!*Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,0,nn}]],{x,0,n}]*n!,{n,nn},{k,n}]
A321698
MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179
Offset: 1
The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins:
1: {} 33: {{1},{3}} 109: {{10}}
2: {{}} 41: {{6}} 113: {{1,2,3}}
3: {{1}} 43: {{1,4}} 121: {{3},{3}}
4: {{},{}} 47: {{2,3}} 123: {{1},{6}}
5: {{2}} 49: {{1,1},{1,1}} 125: {{2},{2},{2}}
7: {{1,1}} 51: {{1},{4}} 127: {{11}}
8: {{},{},{}} 53: {{1,1,1,1}} 128: {{},{},{},{},{},{}}
9: {{1},{1}} 55: {{2},{3}} 131: {{1,1,1,1,1}}
11: {{3}} 59: {{7}} 137: {{2,5}}
13: {{1,2}} 64: {{},{},{},{},{},{}} 139: {{1,7}}
15: {{1},{2}} 67: {{8}} 149: {{3,4}}
16: {{},{},{},{}} 73: {{2,4}} 151: {{1,1,2,2}}
17: {{4}} 79: {{1,5}} 155: {{2},{5}}
19: {{1,1,1}} 81: {{1},{1},{1},{1}} 157: {{12}}
23: {{2,2}} 83: {{9}} 161: {{1,1},{2,2}}
25: {{2},{2}} 85: {{2},{4}} 163: {{1,8}}
27: {{1},{1},{1}} 93: {{1},{5}} 165: {{1},{2},{3}}
29: {{1,3}} 97: {{3,3}} 167: {{2,6}}
31: {{5}} 101: {{1,6}} 169: {{1,2},{1,2}}
32: {{},{},{},{},{}} 103: {{2,2,2}} 177: {{1},{7}}
Cf.
A005176,
A007016,
A112798,
A271103,
A283877,
A299353,
A302242,
A306017,
A319056,
A319189,
A320324,
A321699,
A321717,
A322554,
A322703,
A322833.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]
A322659
Number of connected regular simple graphs on n labeled vertices.
Original entry on oeis.org
1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]
A301924
Regular triangle where T(n,k) is the number of unlabeled k-uniform connected hypergraphs spanning n vertices.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 21, 29, 4, 1, 0, 112, 2101, 150, 5, 1, 0, 853, 7011181, 7013164, 1037, 6, 1, 0, 11117, 1788775603301, 29281354507753847, 1788782615612, 12338, 7, 1, 0, 261080, 53304526022885278403, 234431745534048893449761040648508, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1
Triangle begins:
1
0 1
0 2 1
0 6 3 1
0 21 29 4 1
0 112 2101 150 5 1
0 853 7011181 7013164 1037 6 1
...
The T(4,2) = 6 hypergraphs:
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,4},{2,3},{2,4},{3,4}}
{{1,3},{1,4},{2,3},{2,4},{3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Cf.
A003465,
A006129,
A038041,
A055621,
A298422,
A299353,
A299354,
A299471,
A301481,
A301922,
A306017-
A306021,
A309858.
-
InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoeff(p,n)), vector(#v,n,1/n))}
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
U(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!}
A(n)={Mat(vector(n, k, InvEulerT(vector(n,i,U(i,k)-U(i-1,k)))~))}
{ my(T=A(8)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 26 2019
Showing 1-10 of 13 results.
Comments