cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A301922 Regular triangle where T(n,k) is the number of unlabeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 23, 29, 4, 1, 1, 122, 2102, 150, 5, 1, 1, 888, 7011184, 7013164, 1037, 6, 1, 1, 11302, 1788775603336, 29281354507753848, 1788782615612, 12338, 7, 1, 1, 262322, 53304526022885280592, 234431745534048893449761040648512, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2   1
   1   7   3   1
   1  23  29   4   1
The T(4,2) = 7 hypergraphs:
  {{1,2},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301481. Second column is A002494.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    A:= proc(n, k) A(n, k):= `if`(k>n-k, A(n, n-k), b(n$2, [], k)) end:
    T:= (n, k)-> A(n, k)-A(n-1, k):
    seq(seq(T(n, k), k=1..n), n=1..9);  # Alois P. Heinz, Aug 21 2019
  • PARI
    permcount(v)={my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L,k); while(#L0, u=vecsort(apply(f, u)); d=lex(u,v)); !d}
    Q(n,k,perm)={my(t=0); forsubset([n,k], v, t += can(Vec(v), t->perm[t])); t}
    U(n,k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n,k,rep(p))); s/n!}
    for(n=1, 10, for(k=1, n, print1(U(n,k)-U(n-1,k), ", ")); print) \\ Andrew Howroyd, Aug 10 2019

Formula

T(n,k) = A309858(n,k) - A309858(n-1,k). - Alois P. Heinz, Aug 21 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 09 2019

A301481 Number of unlabeled uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 4, 12, 58, 2381, 14026281, 29284932065996445, 468863491068204425232922367150021, 1994324729204021501147398087008429476673379600542622915802043462326345
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			Non-isomorphic representatives of the a(4) = 12 hypergraphs:
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1},{2},{3},{4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ see A301922 for U(n,k).
    a(n)={ if(n==0, 1, sum(k=1, n, U(n,k)-U(n-1,k))) } \\ Andrew Howroyd, Aug 10 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 09 2019

A301924 Regular triangle where T(n,k) is the number of unlabeled k-uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 21, 29, 4, 1, 0, 112, 2101, 150, 5, 1, 0, 853, 7011181, 7013164, 1037, 6, 1, 0, 11117, 1788775603301, 29281354507753847, 1788782615612, 12338, 7, 1, 0, 261080, 53304526022885278403, 234431745534048893449761040648508, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   0    1
   0    2       1
   0    6       3       1
   0   21      29       4    1
   0  112    2101     150    5 1
   0  853 7011181 7013164 1037 6 1
   ...
The T(4,2) = 6 hypergraphs:
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301920.
Columns k=2..3 are A001349(n > 1), A003190(n > 1).

Programs

  • PARI
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoeff(p,n)), vector(#v,n,1/n))}
    permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
    Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
    U(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!}
    A(n)={Mat(vector(n, k, InvEulerT(vector(n,i,U(i,k)-U(i-1,k)))~))}
    { my(T=A(8)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 26 2019

Formula

Column k is the inverse Euler transform of column k of A301922. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A302129 Number of unlabeled uniform connected hypergraphs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 6, 1, 9, 10, 17, 1, 108, 1, 86, 401, 482, 1, 4469, 1, 8435, 47959, 8082, 1, 1007342, 52414, 112835, 15338453, 11899367, 1, 362657533, 1, 977129970, 9349593479, 35787684, 1771297657, 390347162497, 1, 779945988, 9360467497257, 16838238535445
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size. The weight of a hypergraph is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 9 uniform connected hypergraphs:
  {{1,2,3,4,5,6,7,8}}
  {{1,2,3,7}, {4,5,6,7}}
  {{1,2,5,6}, {3,4,5,6}}
  {{1,3,4,5}, {2,3,4,5}}
  {{1,2}, {1,3}, {2,4}, {3,4}}
  {{1,3}, {2,4}, {3,5}, {4,5}}
  {{1,4}, {2,3}, {2,4}, {3,4}}
  {{1,4}, {2,5}, {3,5}, {4,5}}
  {{1,5}, {2,5}, {3,5}, {4,5}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n, k).
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, d==1, InvEulerT(vector(d, i, T(n/d, i)))[d] )))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Jan 16 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 16 2024
Showing 1-4 of 4 results.