cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size.

Original entry on oeis.org

1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024

Examples

			The a(3) = 6 set-systems in which all sets have the same size:
  {{1,2,3}}
  {{1}, {2}, {3}}
  {{1,2}, {1,3}}
  {{1,2}, {2,3}}
  {{1,3}, {2,3}}
  {{1,2}, {1,3}, {2,3}}
		

Crossrefs

Row sums of A299471.
The unlabeled version is A301481.
The connected version is A299353.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024

A301922 Regular triangle where T(n,k) is the number of unlabeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 23, 29, 4, 1, 1, 122, 2102, 150, 5, 1, 1, 888, 7011184, 7013164, 1037, 6, 1, 1, 11302, 1788775603336, 29281354507753848, 1788782615612, 12338, 7, 1, 1, 262322, 53304526022885280592, 234431745534048893449761040648512, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2   1
   1   7   3   1
   1  23  29   4   1
The T(4,2) = 7 hypergraphs:
  {{1,2},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301481. Second column is A002494.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    A:= proc(n, k) A(n, k):= `if`(k>n-k, A(n, n-k), b(n$2, [], k)) end:
    T:= (n, k)-> A(n, k)-A(n-1, k):
    seq(seq(T(n, k), k=1..n), n=1..9);  # Alois P. Heinz, Aug 21 2019
  • PARI
    permcount(v)={my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L,k); while(#L0, u=vecsort(apply(f, u)); d=lex(u,v)); !d}
    Q(n,k,perm)={my(t=0); forsubset([n,k], v, t += can(Vec(v), t->perm[t])); t}
    U(n,k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n,k,rep(p))); s/n!}
    for(n=1, 10, for(k=1, n, print1(U(n,k)-U(n-1,k), ", ")); print) \\ Andrew Howroyd, Aug 10 2019

Formula

T(n,k) = A309858(n,k) - A309858(n-1,k). - Alois P. Heinz, Aug 21 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 09 2019

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Examples

			Triangle begins:
  1
  1       1
  1       3       1
  1       9       7       1
  1      25      37       5       1
  1      75     207      85      21       1
  1     231    1347     525     591       7       1
  1     763   10125   21385   23551    3535     113       1
  1    2619   86173  180201 1216701   31647   30997       9       1
		

Crossrefs

Programs

  • Mathematica
    Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]

Formula

T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020

A301920 Number of unlabeled uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 3, 10, 55, 2369, 14026242, 29284932065996223, 468863491068204425232922367146585, 1994324729204021501147398087008429476673379600542622915802043455294332
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			Non-isomorphic representatives of the a(4) = 10 hypergraphs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 26 2019

A301924 Regular triangle where T(n,k) is the number of unlabeled k-uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 21, 29, 4, 1, 0, 112, 2101, 150, 5, 1, 0, 853, 7011181, 7013164, 1037, 6, 1, 0, 11117, 1788775603301, 29281354507753847, 1788782615612, 12338, 7, 1, 0, 261080, 53304526022885278403, 234431745534048893449761040648508, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   0    1
   0    2       1
   0    6       3       1
   0   21      29       4    1
   0  112    2101     150    5 1
   0  853 7011181 7013164 1037 6 1
   ...
The T(4,2) = 6 hypergraphs:
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301920.
Columns k=2..3 are A001349(n > 1), A003190(n > 1).

Programs

  • PARI
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoeff(p,n)), vector(#v,n,1/n))}
    permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
    Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
    U(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!}
    A(n)={Mat(vector(n, k, InvEulerT(vector(n,i,U(i,k)-U(i-1,k)))~))}
    { my(T=A(8)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 26 2019

Formula

Column k is the inverse Euler transform of column k of A301922. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A302129 Number of unlabeled uniform connected hypergraphs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 6, 1, 9, 10, 17, 1, 108, 1, 86, 401, 482, 1, 4469, 1, 8435, 47959, 8082, 1, 1007342, 52414, 112835, 15338453, 11899367, 1, 362657533, 1, 977129970, 9349593479, 35787684, 1771297657, 390347162497, 1, 779945988, 9360467497257, 16838238535445
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size. The weight of a hypergraph is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 9 uniform connected hypergraphs:
  {{1,2,3,4,5,6,7,8}}
  {{1,2,3,7}, {4,5,6,7}}
  {{1,2,5,6}, {3,4,5,6}}
  {{1,3,4,5}, {2,3,4,5}}
  {{1,2}, {1,3}, {2,4}, {3,4}}
  {{1,3}, {2,4}, {3,5}, {4,5}}
  {{1,4}, {2,3}, {2,4}, {3,4}}
  {{1,4}, {2,5}, {3,5}, {4,5}}
  {{1,5}, {2,5}, {3,5}, {4,5}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n, k).
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, d==1, InvEulerT(vector(d, i, T(n/d, i)))[d] )))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Jan 16 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 16 2024
Showing 1-6 of 6 results.