A000665
Number of 3-uniform hypergraphs on n unlabeled nodes, or equivalently number of relations with 3 arguments on n nodes.
Original entry on oeis.org
1, 1, 1, 2, 5, 34, 2136, 7013320, 1788782616656, 53304527811667897248, 366299663432194332594005123072, 1171638318502989084030402509596875836036608, 3517726593606526072882013063011594224625680712384971214848
Offset: 0
From _Gus Wiseman_, Dec 13 2018: (Start)
Non-isomorphic representatives of the a(5) = 34 hypergraphs:
{}
{{123}}
{{125}{345}}
{{134}{234}}
{{123}{245}{345}}
{{124}{134}{234}}
{{135}{245}{345}}
{{145}{245}{345}}
{{123}{124}{134}{234}}
{{123}{145}{245}{345}}
{{124}{135}{245}{345}}
{{125}{135}{245}{345}}
{{134}{235}{245}{345}}
{{145}{235}{245}{345}}
{{123}{124}{135}{245}{345}}
{{123}{145}{235}{245}{345}}
{{124}{134}{235}{245}{345}}
{{134}{145}{235}{245}{345}}
{{135}{145}{235}{245}{345}}
{{145}{234}{235}{245}{345}}
{{123}{124}{134}{235}{245}{345}}
{{123}{134}{145}{235}{245}{345}}
{{123}{145}{234}{235}{245}{345}}
{{124}{135}{145}{235}{245}{345}}
{{125}{135}{145}{235}{245}{345}}
{{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{235}{245}{345}}
{{124}{135}{145}{234}{235}{245}{345}}
{{125}{135}{145}{234}{235}{245}{345}}
{{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{234}{235}{245}{345}}
{{125}{134}{135}{145}{234}{235}{245}{345}}
{{124}{125}{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..28 (first 26 terms from Andrew Howroyd)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Victor Falgas-Ravry and Emil R. Vaughan, On applications of Razborov's flag algebra calculus to extremal 3-graph theory, arXiv preprint arXiv:1110.1623 [math.CO], 2011.
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- E. M. Palmer, On the number of n-plexes, Discrete Math., 6 (1973), 377-390.
- Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989.
Row sums of
A092337. Spanning 3-uniform hypergraphs are counted by
A322451.
-
(* about 85 seconds on a laptop computer *)
Needs["Combinatorica`"];Table[A = Subsets[Range[n],{3}];CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /. Table[s[i] -> 2, {i, 1, Binomial[n, 3]}], {n, 1, 8}] (* Geoffrey Critzer, Oct 28 2015 *)
Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{3}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,8}] (* Gus Wiseman, Dec 13 2018 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[p_] := Sum[Ceiling[(p[[i]] - 1)*((p[[i]] - 2)/6)], {i, 1, Length[p]}] + Sum[Sum[c = p[[i]]; d = p[[j]]; GCD[c, d]*(c + d - 2 + Mod[(c - d)/GCD[c, d], 2])/2 + Sum[c*d*p[[k]]/LCM[c, d, p[[k]]], {k, 1, j - 1}], {j, 1, i - 1}], {i, 2, Length[p]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
a /@ Range[0, 12] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(p)={sum(i=1, #p, ceil((p[i]-1)*(p[i]-2)/6)) + sum(i=2, #p, sum(j=1, i-1, my(c=p[i], d=p[j]); gcd(c,d)*(c + d - 2 + (c-d)/gcd(c,d)%2)/2 + sum(k=1, j-1, c*d*p[k]/lcm(lcm(c,d), p[k]))))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Dec 11 2018
A299471
Regular triangle where T(n,k) is the number of labeled k-uniform hypergraphs spanning n vertices.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 41, 11, 1, 1, 768, 958, 26, 1, 1, 27449, 1042642, 32596, 57, 1, 1, 1887284, 34352419335, 34359509614, 2096731, 120, 1, 1, 252522481, 72057319189324805, 1180591620442534312297, 72057594021152435, 268434467, 247, 1, 1, 66376424160
Offset: 1
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 41, 11, 1;
1, 768, 958, 26, 1;
1, 27449, 1042642, 32596, 57, 1;
...
-
Table[Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,10},{k,n}]
-
T(n, k) = sum(d = 0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)) \\ Andrew Howroyd, Jan 16 2024
A309858
Number A(n,k) of k-uniform hypergraphs on n unlabeled nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 1, 4, 5, 2, 1, 1, 1, 2, 11, 6, 2, 1, 1, 1, 1, 5, 34, 7, 2, 1, 1, 1, 1, 2, 34, 156, 8, 2, 1, 1, 1, 1, 1, 6, 2136, 1044, 9, 2, 1, 1, 1, 1, 1, 2, 156, 7013320, 12346, 10, 2, 1, 1, 1, 1, 1, 1, 7, 7013320, 1788782616656, 274668, 11, 2
Offset: 0
Square array A(n,k) begins:
2, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 1, 1, 1, 1, 1, 1, ...
2, 3, 2, 1, 1, 1, 1, 1, ...
2, 4, 4, 2, 1, 1, 1, 1, ...
2, 5, 11, 5, 2, 1, 1, 1, ...
2, 6, 34, 34, 6, 2, 1, 1, ...
2, 7, 156, 2136, 156, 7, 2, 1, ...
2, 8, 1044, 7013320, 7013320, 1044, 8, 2, ...
Columns k=0..10 give:
A007395,
A000027,
A000088,
A000665,
A051240,
A051249,
A309860,
A309861,
A309862,
A309863,
A309864.
-
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
A:= proc(n, k) option remember; `if`(k>n, 1,
`if`(k>n-k, A(n, n-k), b(n$2, [], k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
T(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!} \\ Andrew Howroyd, Aug 22 2019
A322451
Number of unlabeled 3-uniform hypergraphs spanning n vertices.
Original entry on oeis.org
1, 0, 0, 1, 3, 29, 2102, 7011184, 1788775603336, 53304526022885280592, 366299663378889804782337225824, 1171638318502622784366970315264281830913536, 3517726593606524901243694560022510194223171115509135178240
Offset: 0
Non-isomorphic representatives of the a(5) = 29 hypergraphs:
{{125}{345}}
{{123}{245}{345}}
{{135}{245}{345}}
{{145}{245}{345}}
{{123}{145}{245}{345}}
{{124}{135}{245}{345}}
{{125}{135}{245}{345}}
{{134}{235}{245}{345}}
{{145}{235}{245}{345}}
{{123}{124}{135}{245}{345}}
{{123}{145}{235}{245}{345}}
{{124}{134}{235}{245}{345}}
{{134}{145}{235}{245}{345}}
{{135}{145}{235}{245}{345}}
{{145}{234}{235}{245}{345}}
{{123}{124}{134}{235}{245}{345}}
{{123}{134}{145}{235}{245}{345}}
{{123}{145}{234}{235}{245}{345}}
{{124}{135}{145}{235}{245}{345}}
{{125}{135}{145}{235}{245}{345}}
{{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{235}{245}{345}}
{{124}{135}{145}{234}{235}{245}{345}}
{{125}{135}{145}{234}{235}{245}{345}}
{{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{234}{235}{245}{345}}
{{125}{134}{135}{145}{234}{235}{245}{345}}
{{124}{125}{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
A320395
Number of non-isomorphic 3-uniform multiset systems over {1,...,n}.
Original entry on oeis.org
1, 2, 10, 208, 45960, 287800704, 100103176111616, 3837878984050795692032, 32966965900633495618246298767360, 128880214965936601447070466061615999984402432, 464339910355487357558396669850788946402420533504952464572416
Offset: 0
Non-isomorphic representatives of the a(2) = 10 multiset systems:
{}
{{111}}
{{122}}
{{111}{222}}
{{112}{122}}
{{112}{222}}
{{122}{222}}
{{111}{122}{222}}
{{112}{122}{222}}
{{111}{112}{122}{222}}
The 2-uniform case is
A000666. The case of sets (as opposed to multisets) is
A000665. The case of labeled spanning sets is
A302374, with unlabeled case
A322451.
-
Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],3],OrderedQ]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,6}]
-
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(perm)={my(t=0); forsubset([#perm+2, 3], v, t += can([v[1],v[2]-1,v[3]-2], t->perm[t])); t}
a(n)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(rep(p))); s/n!} \\ Andrew Howroyd, Aug 26 2019
A051240
Number of 4-uniform hypergraphs on n unlabeled nodes, or equivalently pure 3-dimensional simplicial complexes on n unlabeled nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 156, 7013320, 29281354514767168, 234431745534048922731115555415680, 453456943706240925312368435237969462391555337386758635520
Offset: 0
- V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A301481
Number of unlabeled uniform hypergraphs spanning n vertices.
Original entry on oeis.org
1, 1, 2, 4, 12, 58, 2381, 14026281, 29284932065996445, 468863491068204425232922367150021, 1994324729204021501147398087008429476673379600542622915802043462326345
Offset: 0
Non-isomorphic representatives of the a(4) = 12 hypergraphs:
{{1,2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3},{4}}
{{1,3,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,4},{2,3},{2,4},{3,4}}
{{1,3},{1,4},{2,3},{2,4},{3,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
-
\\ see A301922 for U(n,k).
a(n)={ if(n==0, 1, sum(k=1, n, U(n,k)-U(n-1,k))) } \\ Andrew Howroyd, Aug 10 2019
A319540
Number of unlabeled 3-uniform hypergraphs spanning n vertices such that every pair of vertices appears together in some block.
Original entry on oeis.org
1, 1, 0, 1, 2, 14, 964, 3908438
Offset: 0
Non-isomorphic representatives of the a(5) = 14 hypergraphs:
{{123}{145}{245}{345}}
{{123}{124}{135}{245}{345}}
{{123}{145}{235}{245}{345}}
{{123}{134}{145}{235}{245}{345}}
{{123}{145}{234}{235}{245}{345}}
{{124}{135}{145}{235}{245}{345}}
{{125}{135}{145}{235}{245}{345}}
{{123}{124}{135}{145}{235}{245}{345}}
{{124}{135}{145}{234}{235}{245}{345}}
{{125}{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{234}{235}{245}{345}}
{{125}{134}{135}{145}{234}{235}{245}{345}}
{{124}{125}{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
A301924
Regular triangle where T(n,k) is the number of unlabeled k-uniform connected hypergraphs spanning n vertices.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 21, 29, 4, 1, 0, 112, 2101, 150, 5, 1, 0, 853, 7011181, 7013164, 1037, 6, 1, 0, 11117, 1788775603301, 29281354507753847, 1788782615612, 12338, 7, 1, 0, 261080, 53304526022885278403, 234431745534048893449761040648508, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1
Triangle begins:
1
0 1
0 2 1
0 6 3 1
0 21 29 4 1
0 112 2101 150 5 1
0 853 7011181 7013164 1037 6 1
...
The T(4,2) = 6 hypergraphs:
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,4},{2,3},{2,4},{3,4}}
{{1,3},{1,4},{2,3},{2,4},{3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Cf.
A003465,
A006129,
A038041,
A055621,
A298422,
A299353,
A299354,
A299471,
A301481,
A301922,
A306017-
A306021,
A309858.
-
InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoeff(p,n)), vector(#v,n,1/n))}
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
U(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!}
A(n)={Mat(vector(n, k, InvEulerT(vector(n,i,U(i,k)-U(i-1,k)))~))}
{ my(T=A(8)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 26 2019
A003190
Number of connected 2-plexes.
Original entry on oeis.org
1, 0, 1, 3, 29, 2101, 7011181, 1788775603301, 53304526022885278403, 366299663378889804782330207902, 1171638318502622784366970315262493034215728, 3517726593606524901243694560022510194169866584119717555335
Offset: 1
From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(5) = 29 2-plexes:
{{125}{345}}
{{123}{245}{345}}
{{135}{245}{345}}
{{145}{245}{345}}
{{123}{145}{245}{345}}
{{124}{135}{245}{345}}
{{125}{135}{245}{345}}
{{134}{235}{245}{345}}
{{145}{235}{245}{345}}
{{123}{124}{135}{245}{345}}
{{123}{145}{235}{245}{345}}
{{124}{134}{235}{245}{345}}
{{134}{145}{235}{245}{345}}
{{135}{145}{235}{245}{345}}
{{145}{234}{235}{245}{345}}
{{123}{124}{134}{235}{245}{345}}
{{123}{134}{145}{235}{245}{345}}
{{123}{145}{234}{235}{245}{345}}
{{124}{135}{145}{235}{245}{345}}
{{125}{135}{145}{235}{245}{345}}
{{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{235}{245}{345}}
{{124}{135}{145}{234}{235}{245}{345}}
{{125}{135}{145}{234}{235}{245}{345}}
{{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{135}{145}{234}{235}{245}{345}}
{{125}{134}{135}{145}{234}{235}{245}{345}}
{{124}{125}{134}{135}{145}{234}{235}{245}{345}}
{{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A000665 (unlabeled 3-uniform),
A025035,
A125791 (labeled 3-uniform),
A289837,
A301922,
A302374 (labeled 3-uniform spanning),
A302394,
A306017,
A319540,
A320395,
A322451 (unlabeled 3-uniform spanning),
A323292-
A323299.
Showing 1-10 of 12 results.
Comments