Original entry on oeis.org
1, 1, 1, 2, 6, 156, 7013488, 29288387523484992, 234431745534048922731115019069056
Offset: 1
A000088
Number of simple graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
- Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
- Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Keith M. Briggs, Table of n, a(n) for n = 0..87 (From link below)
- R. Absil and H. Mélot, Digenes: genetic algorithms to discover conjectures about directed and undirected graphs, arXiv preprint arXiv:1304.7993 [cs.DM], 2013.
- Natalie Arkus, Vinothan N. Manoharan and Michael P. Brenner. Deriving Finite Sphere Packings, arXiv:1011.5412 [cond-mat.soft], Nov 24, 2010. (See Table 1.)
- Leonid Bedratyuk and Anna Bedratyuk, A new formula for the generating function of the numbers of simple graphs, Comptes rendus de l'Académie Bulgare des Sciences, Tome 69, No 3, 2016, p.259-268.
- Benjamin A. Blumer, Michael S. Underwood and David L. Feder, Single-qubit unitary gates by graph scattering, arXiv:1111.5032 [quant-ph], 2011.
- Keith M. Briggs, Combinatorial Graph Theory [Gives first 140 terms]
- Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur and Hadrien Melot, House of Graphs: a database of interesting graphs, arXiv preprint arXiv:1204.3549 [math.CO], 2012.
- P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp. [Annotated scanned copy]
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
- Gi-Sang Cheon, Jinha Kim, Minki Kim and Sergey Kitaev, On k-11-representable graphs, arXiv:1803.01055 [math.CO], 2018.
- CombOS - Combinatorial Object Server, Generate graphs
- Karen M. Daehli, Sarah A Obead, Hsuan-Yin Lin, and Eirik Rosnes, Improved Capacity Outer Bound for Private Quadratic Monomial Computation, arXiv:2401.06125 [cs.IR], 2024.
- R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271. (Annotated scanned copy of 3 pages)
- Peter Dukes, Notes for Math 422: Enumeration and Ramsey Theory, University of Victoria BC Canada (2019). See page 36.
- D. S. Dummit, E. P. Dummit and H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, arXiv preprint arXiv:1512.06480 [math.NT], 2015.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Mareike Fischer, Michelle Galla, Lina Herbst, Yangjing Long, and Kristina Wicke, Non-binary treebased unrooted phylogenetic networks and their relations to binary and rooted ones, arXiv:1810.06853 [q-bio.PE], 2018.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 105.
- E. Friedman, Illustration of small graphs
- Harald Fripertinger, Graphs
- Scott Garrabrant and Igor Pak, Pattern Avoidance is Not P-Recursive, preprint, 2015.
- Lee M. Gunderson and Gecia Bravo-Hermsdorff, Introducing Graph Cumulants: What is the Variance of Your Social Network?, arXiv:2002.03959 [math.ST], 2020.
- P. Hegarty, On the notion of balance in social network analysis, arXiv preprint arXiv:1212.4303 [cs.SI], 2012.
- S. Hougardy, Home Page
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- Richard Hua and Michael J. Dinneen, Improved QUBO Formulation of the Graph Isomorphism Problem, SN Computer Science (2020) Vol. 1, No. 19.
- A. Itzhakov and M. Codish, Breaking Symmetries in Graph Search with Canonizing Sets, arXiv preprint arXiv:1511.08205 [cs.AI], 2015-2016.
- Dan-Marian Joiţa and Lorentz Jäntschi, Extending the Characteristic Polynomial for Characterization of C_20 Fullerene Congeners, Mathematics (2017), 5(4), 84.
- Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes
- Maksim Karev, The space of framed chord diagrams as a Hopf module, arXiv preprint arXiv:1404.0026 [math.GT], 2014.
- J. M. Larson, Cheating Because They Can: Social Networks and Norm Violators, 2014. See Footnote 11.
- Steffen Lauritzen, Alessandro Rinaldo and Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
- O. B. Lupanov, On asymptotic estimates of the number of graphs and networks with n edges, Problems of Cybernetics [in Russian], Moscow 4 (1960): 5-21.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
- B. D. McKay, Maple program (used to redirect to here).
- B. D. McKay, Maple program [Cached copy, with permission]
- B. D. McKay, Simple graphs
- A. Milicevic and N. Trinajstic, Combinatorial Enumeration in Chemistry, Chem. Modell., Vol. 4, (2006), pp. 405-469.
- Angelo Monti and Blerina Sinaimeri, Effects of graph operations on star pairwise compatibility graphs, arXiv:2410.16023 [cs.DM], 2024. See p. 16.
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- E. M. Palmer, Letter to N. J. A. Sloane, no date
- Marko Riedel, Nonisomorphic graphs.
- Marko Riedel, Compact Maple code for cycle index, sequence values and ordinary generating function by the number of edges.
- R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327-356.
- Sage, Common Graphs (Graph Generators)
- S. S. Skiena, Generating graphs
- N. J. A. Sloane, Illustration of initial terms
- Quico Spaen, Christopher Thraves Caro and Mark Velednitsky, The Dimension of Valid Distance Drawings of Signed Graphs, Discrete & Computational Geometry (2019), 1-11.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Overview of the 17 Parts (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 1
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 2
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 3
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 4
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 5
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 6
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 7
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 8
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 9
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 10
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 11
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 12
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 13
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 14
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 15
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 16
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- James Turner and William H. Kautz, A survey of progress in graph theory in the Soviet Union SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 18.
- S. Uijlen and B. Westerbaan, A Kochen-Specker system has at least 22 vectors, arXiv preprint arXiv:1412.8544 [cs.DM], 2014.
- Mark Velednitsky, New Algorithms for Three Combinatorial Optimization Problems on Graphs, Ph. D. Dissertation, University of California, Berkeley (2020).
- Eric Weisstein's World of Mathematics, Simple Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Degree Sequence
- E. M. Wright, The number of graphs on many unlabelled nodes, Mathematische Annalen, December 1969, Volume 183, Issue 4, 250-253
- E. M. Wright, The number of unlabelled graphs with many nodes and edges Bull. Amer. Math. Soc. Volume 78, Number 6 (1972), 1032-1034.
- Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
- Index entries for "core" sequences
-
# To produce all graphs on 4 nodes, for example:
with(GraphTheory):
L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018
# alternative Maple program:
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
+add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= n-> b(n$2, []):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
Needs["Combinatorica`"]
Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
a[n_] := b[n, n, {}];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
-
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A000088(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
-
def a(n):
return len(list(graphs(n)))
# Ralf Stephan, May 30 2014
Harary gives an incorrect value for a(8); compare
A007149
A309858
Number A(n,k) of k-uniform hypergraphs on n unlabeled nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 1, 4, 5, 2, 1, 1, 1, 2, 11, 6, 2, 1, 1, 1, 1, 5, 34, 7, 2, 1, 1, 1, 1, 2, 34, 156, 8, 2, 1, 1, 1, 1, 1, 6, 2136, 1044, 9, 2, 1, 1, 1, 1, 1, 2, 156, 7013320, 12346, 10, 2, 1, 1, 1, 1, 1, 1, 7, 7013320, 1788782616656, 274668, 11, 2
Offset: 0
Square array A(n,k) begins:
2, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 1, 1, 1, 1, 1, 1, ...
2, 3, 2, 1, 1, 1, 1, 1, ...
2, 4, 4, 2, 1, 1, 1, 1, ...
2, 5, 11, 5, 2, 1, 1, 1, ...
2, 6, 34, 34, 6, 2, 1, 1, ...
2, 7, 156, 2136, 156, 7, 2, 1, ...
2, 8, 1044, 7013320, 7013320, 1044, 8, 2, ...
Columns k=0..10 give:
A007395,
A000027,
A000088,
A000665,
A051240,
A051249,
A309860,
A309861,
A309862,
A309863,
A309864.
-
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
A:= proc(n, k) option remember; `if`(k>n, 1,
`if`(k>n-k, A(n, n-k), b(n$2, [], k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
T(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!} \\ Andrew Howroyd, Aug 22 2019
A309865
Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 11, 5, 2, 2, 6, 34, 34, 6, 2, 2, 7, 156, 2136, 156, 7, 2, 2, 8, 1044, 7013320, 7013320, 1044, 8, 2, 2, 9, 12346, 1788782616656, 29281354514767168, 1788782616656, 12346, 9, 2
Offset: 0
Triangle T(n,k) begins:
2;
2, 2;
2, 3, 2;
2, 4, 4, 2;
2, 5, 11, 5, 2;
2, 6, 34, 34, 6, 2;
2, 7, 156, 2136, 156, 7, 2;
2, 8, 1044, 7013320, 7013320, 1044, 8, 2;
...
Columns k=0..10 give:
A007395,
A000027,
A000088,
A000665,
A051240,
A051249,
A309860,
A309861,
A309862,
A309863,
A309864.
Cf.
A309858 (the same as square array).
-
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
T:= proc(n, k) option remember; `if`(k>n-k,
T(n, n-k), b(n$2, [], k))
end:
seq(seq(T(n, k), k=0..n), n=0..9);
A051249
Pure 4-dimensional simplicial complexes on n unlabeled nodes.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 7, 1044, 1788782616656, 234431745534048922731115555415680, 1994324729203114587259985605157804740271034553359179870979936357974016
Offset: 0
A092337
Triangle read by rows: T(n,m) = number of 3-uniform hypergraphs with m hyperedges on n unlabeled nodes, where 0 <= m <= C(n,3).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1, 1, 1, 3, 10, 38, 137, 509, 1760, 5557, 15709, 39433, 87659, 172933, 303277, 473827, 660950, 824410, 920446, 920446, 824410, 660950
Offset: 3
Triangle T(n,m) begins:
1, 1;
1, 1, 1, 1, 1;
1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1;
1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1;
-
Needs["Combinatorica`"]; Table[A = Subsets[Range[n], {3}];
CoefficientList[CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /.
Table[s[i] -> 1 + x^i, {i, 1, Binomial[n, 3]}], x], {n,3,7}] // Grid (* Geoffrey Critzer, Oct 28 2015 *)
Showing 1-6 of 6 results.
Comments