A299474 a(n) = 4*p(n), where p(n) is the number of partitions of n.
4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904
Offset: 0
Keywords
Examples
Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6): -------------------------------------------------------------------------------- n ........: 1 2 3 4 5 6 (stage) a(n)......: 4 8 12 20 28 44 (edges) A299475(n): 4 7 10 16 22 34 (vertices) A000041(n): 1 2 3 5 7 11 (regions) -------------------------------------------------------------------------------- r p(n) -------------------------------------------------------------------------------- . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 .... 1 ....|_| |_| | |_| | | |_| | | | |_| | | | | |_| | | | | | 2 .... 2 .........|_ _| |_ _| | |_ _| | | |_ _| | | | |_ _| | | | | 3 .... 3 ................|_ _ _| |_ _ _| | |_ _ _| | | |_ _ _| | | | 4 |_ _| | |_ _| | | |_ _| | | | 5 .... 5 .........................|_ _ _ _| |_ _ _ _| | |_ _ _ _| | | 6 |_ _ _| | |_ _ _| | | 7 .... 7 ....................................|_ _ _ _ _| |_ _ _ _ _| | 8 |_ _| | | 9 |_ _ _ _| | 10 |_ _ _| | 11 .. 11 .................................................|_ _ _ _ _ _| . Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram. Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram. The total number of parts equals the sum of largest parts. Note that every diagram contains all previous diagrams. An infinite diagram is a table of all partitions of all positive integers.
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
GAP
List([0..50],n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018
-
Maple
with(combinat): seq(4*numbpart(n),n=0..50); # Muniru A Asiru, Jul 10 2018
-
Mathematica
4*PartitionsP[Range[0,50]] (* Harvey P. Dale, Dec 05 2023 *)
-
PARI
a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018
-
Python
from sympy.ntheory import npartitions def a(n): return 4*npartitions(n) print([a(n) for n in range(51)]) # Michael S. Branicky, Apr 04 2021
Comments