A299504 Triangle read by rows, T(n,k) = (k+1)^(n-k)*k! for 0 <= k <= n.
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 8, 18, 24, 24, 1, 16, 54, 96, 120, 120, 1, 32, 162, 384, 600, 720, 720, 1, 64, 486, 1536, 3000, 4320, 5040, 5040, 1, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320, 1, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 1 [2] 1, 2, 2 [3] 1, 4, 6, 6 [4] 1, 8, 18, 24, 24 [5] 1, 16, 54, 96, 120, 120 [6] 1, 32, 162, 384, 600, 720, 720 [7] 1, 64, 486, 1536, 3000, 4320, 5040, 5040 [8] 1, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320 [9] 1, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
Links
- Andrew Howroyd, Rows n=0..50 of triangle, flattened
- Ron Graham, Eulerian Adventures with Don, 2018.
Programs
-
Magma
[(k+1)^(n-k)*Factorial(k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 08 2018
-
Maple
T := (n,k) -> (k+1)^(n-k)*k!: seq(seq(T(n,k), k=0..n), n=0..9);
-
Mathematica
Table[(k+1)^(n-k)*k!, {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
-
PARI
T(n,k) = {(k+1)^(n-k)*k!} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
-
Python
from sympy import factorial def T(n, k): return (k+1)**(n-k)*factorial(k) for n in range(21): print([T(n, k) for k in range(n+1)]) # Indranil Ghosh, Mar 02 2018
Comments