cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167123 Number of isomorphism classes of separated dissections of an equilateral triangle into n nonoverlapping equilateral triangles.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 3, 8, 20, 55, 161, 478, 1496, 4804, 15589, 51377, 172162, 583810, 1998407
Offset: 1

Views

Author

Jonathan Vos Post, Oct 27 2009

Keywords

Comments

A dissection into 5 triangles is impossible.
From table on p.11 of Drapal. The authors write: We enumerate all dissections of an equilateral triangle into smaller equilateral triangles. We confirm W. T. Tutte's claim that the smallest perfect dissection has size 15 and we find all perfect dissections up to size 20.
The meaning of "separated dissection" is defined at the end of the introduction of the Drapal and Hamalainen article, see link. - Hugo Pfoertner, Feb 17 2018

Examples

			a(8)=3:
            *
           / \
          /   \
         /     \
        /       \
       /         \
      *---*-------*
     / \ / \     / \
    *---*   \   /   \
   / \ /     \ /     \
  *---*-------*-------*
            *
           / \
          /   \
         /     \
        *-------*
       / \     / \
      *---*   /   \
     / \ / \ /     \
    /   *---*       \
   /     \ /         \
  *-------*-----------*
          *
         / \
        *---*
       / \ / \
      *---*   \
     / \ /     \
    *---*       \
   / \ /         \
  *---*-----------*
		

Crossrefs

Extensions

a(1)-a(3) added and name accommodated as suggested by M. F. Hasler, Feb 23 2018
Corrected and extended by Hugo Pfoertner, Aug 09 2017
Definition corrected by Hugo Pfoertner, Feb 17 2018

A300001 Side length of the smallest equilateral triangle that can be dissected into n equilateral triangles with integer sides, or 0 if no such triangle exists.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 4, 4, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6, 5, 6, 6, 5, 7, 6, 5, 7, 6, 6, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 8, 7, 7, 8, 7, 8, 8, 7, 8, 8, 7, 8, 9, 8, 8, 9, 8, 8, 9, 8, 9, 9, 8, 9, 9, 8, 9, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 10, 10, 9, 10, 10, 9, 10, 10, 10, 10, 10, 11, 10, 10, 11, 10, 10, 11, 10, 11, 11, 10, 11, 11, 10
Offset: 1

Views

Author

Hugo Pfoertner, Feb 20 2018

Keywords

Comments

No solutions exist for n = 2, 3 and 5.
a(n) = A290820(n) for n <= 8. It is conjectured that a(n) < A290820(n) for all n > 12.
The seven numbers mentioned by Peter Munn in the Formula section [1, 2, 4, 5, 7, 10, 13] coincide with the seven terms of A123120. - M. F. Hasler and Omar E. Pol, Feb 23 2018

Examples

			            a(9)=3               a(10)=4                a(11)=5
              *                     *                      *
             / \                   / \                    / \
            *---*                 *---*                  +   +
           / \ / \               / \ / \                /     \
          *---*---*             *---*---*              +       +
         / \ / \ / \           / \ / \ / \            /         \
        *---*---*---*         +   *---*   +          *---+---+---*
                             /     \ /     \        / \ / \     / \
                            *---+---*---+---*      *---*---*   +   +
                                                  / \ / \ / \ /     \
                                                 *---*---*---*---+---*
.
           a(12)=6                a(13)=4                a(14)=5
              *                      *                      *
             / \                    / \                    / \
            *---*                  *---*                  +   +
           / \ / \                / \ / \                /     \
          *---*---*              *---*---*              +       +
         / \ / \ / \            / \ / \ / \            /         \
        *---*---*---*          *---*   *---*          *---+---+---*
       / \         / \        / \ /     \ / \        / \ / \ / \ / \
      *   +       +   +      *---*---*---*---*      *---*---*---*   +
     /     \     /     \                           / \ / \ / \ /     \
    +       +   +       +                         *---*---*---*---+---*
   /         \ /         \
  *---+---+---*---+---+---*
.
           a(15)=6                 a(16)=4                a(17)=5
              *                       *                      *
             / \                     / \                    / \
            +   +                   *---*                  +   +
           /     \                 / \ / \                /     \
          +       +               *---*---*              +       +
         /         \             / \ / \ / \            /         \
        +           +           *---*---*---*          *---*---*---*
       /             \         / \ / \ / \ / \        / \ / \ / \ / \
      *---*---*---*---*       *---*---*---*---*      *---*---*---*---*
     / \     / \     / \                            / \ / \ / \ / \ / \
    *---*   *---*   *---*                          *---*---*---*---*---*
   / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*
.
           a(18)=6                 a(19)=5                 a(20)=6
              *                       *                       *
             / \                     / \                     / \
            +   +                   +   +                   *---*
           /     \                 /     \                 / \ / \
          +       +               *---*---*               *---*---*
         /         \             / \     / \             / \ / \ / \
        +           +           *---*   *---*           *---*---*---*
       /             \         / \ / \ / \ / \         / \ / \ / \ / \
      *---*---*---*---*       *---*---*---*---*       +   *---*---*   +
     / \ / \ / \ / \ / \     / \ / \ / \ / \ / \     /     \ / \ /     \
    *---*---*   *---*---*   *---*---*---*---*---*   +       *---*       +
   / \ / \ /     \ / \ / \                         /         \ /         \
  *---*---*---+---*---*---*                       *---+---+---*---+---+---*
		

Crossrefs

Formula

a(n^2) = n for all n>=1, a(n^2-3) = n for all n>=3. - Corrected by Peter Munn, Feb 24 2018
For n > 23, if A068527(n) = 1, 2, 4, 5, 7, 10 or 13 then a(n) = ceiling(sqrt(n)) + 1 else a(n) = ceiling(sqrt(n)). - Peter Munn, Feb 23 2018

Extensions

a(21)-a(100) from Peter Munn, Feb 24 2018

A358715 a(n) is the number of distinct ways to cut an equilateral triangle with edges of size n into equilateral triangles with integer sides.

Original entry on oeis.org

1, 2, 5, 26, 220, 3622, 105859, 5677789, 553715341, 98404068313, 31850967186980, 18779046566454536, 20167518569123722322, 39451359692134386945019
Offset: 1

Views

Author

Craig Knecht and John Mason, Nov 28 2022

Keywords

Comments

In other words, the number of equilateral triangular tilings of an equilateral triangle, where rotations and reflections are considered distinct.

Examples

			a(3)=5 because of:
    /\      /\      /\      /\      /\
   /  \    /\/\    /  \    /\/\    /\/\
  /    \  /  \/\  /\/\/\  /\/  \  /\/\/\
		

Crossrefs

Extensions

a(10)-a(14) from Walter Trump, Dec 03 2022

A358716 a(n) is the number of inequivalent ways to cut an equilateral triangle with edges of size n into equilateral triangles with integer sides.

Original entry on oeis.org

1, 2, 3, 12, 50, 711, 18031, 952013, 92323440
Offset: 1

Views

Author

Craig Knecht and John Mason, Nov 28 2022

Keywords

Comments

Similar to A358715, but now we do not regard dissections which differ by a rotation and/or reflection as distinct.

Examples

			a(3)=3 because of:
    /\      /\      /\
   /  \    /\/\    /\/\
  /    \  /  \/\  /\/\/\
		

Crossrefs

Showing 1-4 of 4 results.