A290821
Side length of largest equilateral triangle that can be made from n or fewer equilateral triangles with integer sides s_k, subject to gcd(s_1,s_2,...,s_n) = 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 39, 49
Offset: 1
a(12) = 16:
*
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
*---+---*---+---+---+---+---+---+---*
/ \ / \ / \
+ + + + + +
/ \ / \ / \
*---*---* + + +
/ \ / \ / \ / \
+ *---*---+---+---* + +
/ \ / \ / \
+ + + + + +
/ \ / \ / \
+ + + + + +
/ \ / \ / \
+ + + + + +
/ \ / \ / \
*---+---+---+---+---*---+---+---+---*---+---+---+---+---+---+---*
A014529 gives greatest area of any convex polygon constructable from such triangles.
A089047 is this sequence's equivalent for squares.
Definition modified and 5 terms prepended by
Peter Munn, Mar 14 2018
A290697
Size of largest triangle occurring in any of the possible dissections of an equilateral triangle into n equilateral triangles with integer sides, assuming gcd(s_1,s_2,...,s_n)=1, s_k being the side lengths.
Original entry on oeis.org
2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 67, 91
Offset: 6
a(11)=7:
*
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ 7 \
/ \
/ \
/ \
*-----------*---------------*
/ \ / \ / \
/ \ 3 / \ / \
/ 2 \ / \ 4 / \
*-------* / \ / \
/ \ 2 / \ / 4 \ / 4 \
/ \ *---* \ / \
/ 2 \ / \ / \ / \
*-------*---*---------------*---------------*
More illustrations are provided on pages 17-19 of the Drapal and Hamalainen article.
A299705
Number of ways to dissect an equilateral triangle into n non-overlapping equilateral triangles counting isomorphisms only once.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 2, 3, 9, 23, 62, 188, 574, 1826, 5953, 19664, 66049, 224700, 771859, 2674753
Offset: 1
a(9)=9:
* * *
/ \ / \ / \
*---* + + + +
/ \ / \ / \ / \
*---*---* + + + +
/ \ / \ / \ / \ / \
*---*---*---* + + + +
/ \ / \
*---+---*---+---* *---+---+---*---*
/ \ / \ / \ / \ / \ / \
+ + + + + + + + *---*---*
/ \ / \ / \ / \ / \ / \
+ *---*---* + + + + + + +
/ \ / \ / \ / \ / \ / \
*---+---+---*---*---+---+---* *---+---+---*---+---*---+---*
.
* *---+---+---*---+---+---* *
/ \ \ / \ / / \
+ + + + + + + +
/ \ \ / \ / / \
+ + + *---*---* + + +
/ \ \ / \ / \ / \ / / \
+ + *---*---*---* + +
/ \ \ / / \
*---+---*---+---* + + *---+---*---*---*
/ \ / \ / \ \ / / \ / \ / \ / \
+ + + + *---* + + + + + *---* +
/ \ / \ / \ / \ \ / / \ / \ / \
*---+---*---+---*---*---* * *---+---*---+---*---+---*
.
* *---+---*---*---*---+---* *
/ \ \ / \ / \ / \ / / \
+ + + + *---* + + + +
/ \ \ / \ / \ / / \
*---*---* *---+---*---+---* + +
/ \ / \ / \ \ / / \
*---*---*---* + + *---+---+---*
/ \ / \ \ / / \ / \
+ + + + + + + + + +
/ \ / \ \ / / \ / \
+ + + + + + *---*---* + +
/ \ / \ \ / / \ / \ / \ / \
*---+---+---*---+---+---* * *---*---*---*---+---+---*
Offset changed, also name to accommodate, following suggestion by
M. F. Hasler, Feb 23 2018
A290653
Number of perfect dissections of equilateral triangles into n equilateral triangles with integer sides.
Original entry on oeis.org
2, 2, 6, 23, 64, 181
Offset: 15
- Ales Drapal and Carlo Hamalainen, An enumeration of equilateral triangle dissections, arXiv:0910.5199 [math.CO], 2009-2010.
- W. T. Tutte, The dissection of equilateral triangles into equilateral triangles, Mathematical Proceedings of the Cambridge Philosophical Society, 44(4), 463-482. doi:10.1017/S030500410002449X
- Stuart Anderson, An Introduction to Triangled Equilateral Triangles.
- Stuart Anderson, Illustration of dissections for n=15.
- Stuart Anderson, Illustration of dissections for n=16.
- Stuart Anderson, Illustration of dissections for n=17.
- Stuart Anderson, Illustration of dissections for n=18.
- Stuart Anderson, Illustration of dissections for n=19.
- Stuart Anderson, Illustration of dissections for n=20.
A290820
Side length of the smallest equilateral triangles that have a separated dissection into n equilateral triangles with integer sides, or 0 if no such triangle exists.
Original entry on oeis.org
1, 0, 0, 2, 0, 3, 4, 4, 6, 5, 8, 6, 6, 7, 8, 7
Offset: 1
a(6) = 3:
*
/ \
*---*
/ \ / \
*---* +
/ \ / \
*---*---+---*
a(7) = 4:
*
/ \
+ +
/ \
*---*---*
/ \ / \ / \
+ *---* +
/ \ / \
*---+---*---+---*
a(8) = 4:
*
/ \
*---*
/ \ / \
*---* +
/ \ / \
*---* +
/ \ / \
*---*---+---+---*
a(9) = 6:
*
/ \
+ +
/ \
*---+---*
/ \ / \
+ + + +
/ \ / \
*---+---* +
/ \ / \
*---* + +
/ \ / \ / \
*---*---*---+---+---+---*
a(10) = 5:
*
/ \
*---*
/ \ / \
*---* +
/ \ / \
*---* +
/ \ / \
*---* +
/ \ / \
*---*---+---+---+---*
a(11) = 8:
*
/ \
+ +
/ \
*---+---*
/ \ / \
+ + + +
/ \ / \
*---+---* +
/ \ / \
+ + + +
/ \ / \
*---+---* +
/ \ / \
*---* + +
/ \ / \ / \
*---*---*---+---+---+---+---+---*
a(12) = 6:
*
/ \
*---*
/ \ / \
*---* +
/ \ / \
*---* +
/ \ / \
*---* +
/ \ / \
*---* +
/ \ / \
*---*---+---+---+---+---*
a(13) = 6:
*
/ \
+ +
/ \
*---+---*
/ \ / \
+ + *---*
/ \ / \ / \
*---*---*---* +
/ \ / \ / \
*---* + + +
/ \ / \ / \
*---*---+---*---+---+---*
a(14) = 7:
*
/ \
+ +
/ \
+ +
/ \
*---+---*---*
/ \ / \ / \
+ + *---* +
/ \ / \ / \
*---*---*---* +
/ \ / \ / \
*---* + + +
/ \ / \ / \
*---*---+---*---+---+---+---*
a(15) = 8:
*
/ \
+ +
/ \
*---+---*
/ \ / \
+ + *---*
/ \ / \ / \
+ *---* +
/ \ / \
*---+---+---* +
/ \ / \
*---* + +
/ \ / \ / \
*---* + + +
/ \ / \ / \
*---*---+---*---+---+---+---+---*
a(16) = 7:
*
/ \
+ +
/ \
*---+---*
/ \ / \
+ + *---*
/ \ / \ / \
*---*---*---*---*
/ \ / \ / \
*---* + + +
/ \ / \ / \
*---* + + +
/ \ / \ / \
*---*---+---+---*---+---+---*
Title changed as suggested by
Peter Munn, Feb 17 2018
A169955
Number of tau-isomorphism classes of spherical bitrades with |T0| = n.
Original entry on oeis.org
1, 0, 3, 1, 6, 9, 30, 51, 198, 470, 1623, 4830, 16070, 51948, 175047, 588120, 2015226, 6933048, 24123941, 84428820, 297753519
Offset: 4
Showing 1-6 of 6 results.
Comments