cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A089047 Edge length of largest square dissectable into up to n squares in Mrs. Perkins's quilt problem.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 17, 23, 29, 41, 53, 70, 91, 126, 158, 216, 276, 386, 488, 675, 866, 1179, 1544, 2136, 2739, 3755, 4988, 6443
Offset: 1

Views

Author

R. K. Guy, Dec 03 2003

Keywords

Comments

An inverse to A005670.
More precisely, a(n) = greatest k such that A005670(k) <= n. - Peter Munn, Mar 13 2018
It is not clear which terms have been proved to be correct and which are just conjectures. - Geoffrey H. Morley, Sep 07 2012; N. J. A. Sloane, Jul 06 2017
Terms up to and including a(18) have been proved correct by Ed Wynn (2013). - Stuart E Anderson, Sep 16 2013
A089046 and A089047 are almost certainly correct up to 5000. - Ed Pegg Jr, Jul 06 2017
Deleted terms above 5000. - N. J. A. Sloane, Jul 06 2017
Further best known terms are 8568, 11357, 14877, 19594, 26697, 34632. - Ed Pegg Jr, Jul 06 2017
A290821 is the equivalent sequence for equilateral triangles. - Peter Munn, Mar 06 2018

Crossrefs

Extensions

More terms from Ed Pegg Jr, Dec 03 2003
Corrected and extended by Ed Pegg Jr, Apr 18 2010
Duplicate a(6) deleted and a(22)-a(26) revised (from Ed Pegg Jr, Jun 15 2010) by Geoffrey H. Morley, Sep 07 2012
Conjectured terms have been extended up to a(44), based on simple squared square enumeration, by Duijvestijn, Skinner, Anderson, Pegg, Johnson, Milla and Williams. - Stuart E Anderson, Sep 16 2013
a(33) and further terms added by Ed Pegg Jr, Jul 06 2017
Name edited by Peter Munn, Mar 14 2018

A299705 Number of ways to dissect an equilateral triangle into n non-overlapping equilateral triangles counting isomorphisms only once.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 3, 9, 23, 62, 188, 574, 1826, 5953, 19664, 66049, 224700, 771859, 2674753
Offset: 1

Views

Author

Peter Munn and Hugo Pfoertner, Feb 17 2018

Keywords

Comments

Data from Figure 7 of Drapal and Hamalainen, see link.

Examples

			a(9)=9:
        *                 *                              *
       / \               / \                            / \
      *---*             +   +                          +   +
     / \ / \           /     \                        /     \
    *---*---*         +       +                      +       +
   / \ / \ / \       /         \                    /         \
  *---*---*---*     +           +                  +           +
                   /             \                /             \
                  *---+---*---+---*              *---+---+---*---*
                 / \     / \     / \            / \         / \ / \
                +   +   +   +   +   +          +   +       *---*---*
               /     \ /     \ /     \        /     \     / \     / \
              +       *---*---*       +      +       +   +   +   +   +
             /         \ / \ /         \    /         \ /     \ /     \
            *---+---+---*---*---+---+---*  *---+---+---*---+---*---+---*
.
              *         *---+---+---*---+---+---*         *
             / \         \         / \         /         / \
            +   +         +       +   +       +         +   +
           /     \         \     /     \     /         /     \
          +       +         +   *---*---*   +         +       +
         /         \         \ / \ / \ / \ /         /         \
        +           +         *---*---*---*         +           +
       /             \         \         /         /             \
      *---+---*---+---*         +       +         *---+---*---*---*
     / \     / \     / \         \     /         / \     / \ / \ / \
    +   +   +   +   *---*         +   +         +   +   +   *---*   +
   /     \ /     \ / \ / \         \ /         /     \ /     \ /     \
  *---+---*---+---*---*---*         *         *---+---*---+---*---+---*
.
              *         *---+---*---*---*---+---*         *
             / \         \     / \ / \ / \     /         / \
            +   +         +   +   *---*   +   +         +   +
           /     \         \ /     \ /     \ /         /     \
          *---*---*         *---+---*---+---*         +       +
         / \ / \ / \         \             /         /         \
        *---*---*---*         +           +         *---+---+---*
       / \         / \         \         /         / \         / \
      +   +       +   +         +       +         +   +       +   +
     /     \     /     \         \     /         /     \     /     \
    +       +   +       +         +   +         *---*---*   +       +
   /         \ /         \         \ /         / \ / \ / \ /         \
  *---+---+---*---+---+---*         *         *---*---*---*---+---+---*
		

Crossrefs

Extensions

Offset changed, also name to accommodate, following suggestion by M. F. Hasler, Feb 23 2018

A290820 Side length of the smallest equilateral triangles that have a separated dissection into n equilateral triangles with integer sides, or 0 if no such triangle exists.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 4, 4, 6, 5, 8, 6, 6, 7, 8, 7
Offset: 1

Views

Author

Hugo Pfoertner, Aug 11 2017

Keywords

Comments

No solution exists for n = [2, 3, 5].
The meaning of "separated dissection" is defined at the end of the introduction of the Drapal and Hamalainen article, see link. - Hugo Pfoertner, Feb 17 2018

Examples

			a(6) = 3:
        *
       / \
      *---*
     / \ / \
    *---*   +
   / \ /     \
  *---*---+---*
a(7) = 4:
          *
         / \
        +   +
       /     \
      *---*---*
     / \ / \ / \
    +   *---*   +
   /     \ /     \
  *---+---*---+---*
a(8) = 4:
          *
         / \
        *---*
       / \ / \
      *---*   +
     / \ /     \
    *---*       +
   / \ /         \
  *---*---+---+---*
a(9) = 6:
              *
             / \
            +   +
           /     \
          *---+---*
         / \     / \
        +   +   +   +
       /     \ /     \
      *---+---*       +
     / \     /         \
    *---*   +           +
   / \ / \ /             \
  *---*---*---+---+---+---*
a(10) = 5:
            *
           / \
          *---*
         / \ / \
        *---*   +
       / \ /     \
      *---*       +
     / \ /         \
    *---*           +
   / \ /             \
  *---*---+---+---+---*
a(11) = 8:
                  *
                 / \
                +   +
               /     \
              *---+---*
             / \     / \
            +   +   +   +
           /     \ /     \
          *---+---*       +
         / \     /         \
        +   +   +           +
       /     \ /             \
      *---+---*               +
     / \     /                 \
    *---*   +                   +
   / \ / \ /                     \
  *---*---*---+---+---+---+---+---*
a(12) = 6:
              *
             / \
            *---*
           / \ / \
          *---*   +
         / \ /     \
        *---*       +
       / \ /         \
      *---*           +
     / \ /             \
    *---*               +
   / \ /                 \
  *---*---+---+---+---+---*
a(13) = 6:
              *
             / \
            +   +
           /     \
          *---+---*
         / \     / \
        +   +   *---*
       /     \ / \ / \
      *---*---*---*   +
     / \ / \     /     \
    *---*   +   +       +
   / \ /     \ /         \
  *---*---+---*---+---+---*
a(14) = 7:
                *
               / \
              +   +
             /     \
            +       +
           /         \
          *---+---*---*
         / \     / \ / \
        +   +   *---*   +
       /     \ / \ /     \
      *---*---*---*       +
     / \ / \     /         \
    *---*   +   +           +
   / \ /     \ /             \
  *---*---+---*---+---+---+---*
a(15) = 8:
                  *
                 / \
                +   +
               /     \
              *---+---*
             / \     / \
            +   +   *---*
           /     \ / \ / \
          +       *---*   +
         /         \ /     \
        *---+---+---*       +
       / \         /         \
      *---*       +           +
     / \ / \     /             \
    *---*   +   +               +
   / \ /     \ /                 \
  *---*---+---*---+---+---+---+---*
a(16) = 7:
                *
               / \
              +   +
             /     \
            *---+---*
           / \     / \
          +   +   *---*
         /     \ / \ / \
        *---*---*---*---*
       / \ / \         / \
      *---*   +       +   +
     / \ /     \     /     \
    *---*       +   +       +
   / \ /         \ /         \
  *---*---+---+---*---+---+---*
		

Crossrefs

Extensions

Title changed as suggested by Peter Munn, Feb 17 2018

A338861 a(n) is the largest area of a rectangle which can be dissected into n squares with integer sides s_i, i = 1 .. n, and gcd(s_1,...,s_n) = 1.

Original entry on oeis.org

1, 2, 6, 15, 42, 143, 399, 1190, 4209, 10920, 37245, 109886, 339745, 1037186, 3205734, 9784263, 29837784, 93313919, 289627536
Offset: 1

Views

Author

Rainer Rosenthal, Nov 12 2020

Keywords

Comments

A219158 gives the minimum number of squares to tile an i x j rectangle. a(n) is found by checking all rectangles (i,j) for which A219158 has a dissection into n squares.
Due to the potential counterexamples to the minimal squaring conjecture (see MathOverflow link), terms after a(19) have to be considered only as lower bounds: a(20) >= 876696755, a(21) >= 2735106696. - Hugo Pfoertner, Nov 17 2020, Apr 02 2021

Examples

			a(6) = 11*13 = 143.
Dissection of the 11 X 13 rectangle into 6 squares:
.
          +-----------+-------------+
          |           |             |
          |           |             |
          |   6 X 6   |    7 X 7    |
          |           |             |
          |           |             |
          +---------+-+             |
          |         +-+-----+-------+
          |  5 X 5  |       |       |
          |         | 4 X 4 | 4 X 4 |
          |         |       |       |
          +---------+-------+-------+
.
a(19) = 16976*17061 = 289627536.
Dissection of the 16976 X 17061 rectangle into 19 squares:
.
       +----------------+-------------+
       |                |             |
       |                |             |
       |                |     7849    |
       |      9212      |             |
       |                |             |
       |                |             |
       |                |------+------|
       |________________|      |      |
       |             |   see   | 4109 |
       |             |Rosenthal|      |
       |             |  link +-+------+
       |     7764    |-------|        |
       |             |       |  5018  |
       |             | 4279  |        |
       |             |       |        |
       +-------------+-------+--------+
.
		

Crossrefs

This sequence and A089047 are effectively analogs for dissecting (or tiling) rectangles and squares respectively. Analogs using equilateral triangular tiles are A014529 and A290821 respectively.

Extensions

a(11)-a(17) from Hugo Pfoertner based on data from squaring.net website, Nov 17 2020
a(18) from Hugo Pfoertner, Feb 18 2021
a(19) from Hugo Pfoertner, Apr 02 2021

A358715 a(n) is the number of distinct ways to cut an equilateral triangle with edges of size n into equilateral triangles with integer sides.

Original entry on oeis.org

1, 2, 5, 26, 220, 3622, 105859, 5677789, 553715341, 98404068313, 31850967186980, 18779046566454536, 20167518569123722322, 39451359692134386945019
Offset: 1

Views

Author

Craig Knecht and John Mason, Nov 28 2022

Keywords

Comments

In other words, the number of equilateral triangular tilings of an equilateral triangle, where rotations and reflections are considered distinct.

Examples

			a(3)=5 because of:
    /\      /\      /\      /\      /\
   /  \    /\/\    /  \    /\/\    /\/\
  /    \  /  \/\  /\/\/\  /\/  \  /\/\/\
		

Crossrefs

Extensions

a(10)-a(14) from Walter Trump, Dec 03 2022
Showing 1-5 of 5 results.