A005670
Mrs. Perkins's quilt: smallest coprime dissection of n X n square.
Original entry on oeis.org
1, 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1
Illustrating a(7) = 9: a dissection of a 7 X 7 square into 9 pieces, courtesy of _Ed Pegg Jr_:
.___.___.___.___.___.___.___
|...........|.......|.......|
|...........|.......|.......|
|...........|.......|.......|
|...........|___.___|___.___|
|...........|...|...|.......|
|___.___.___|___|___|.......|
|...............|...|.......|
|...............|___|___.___|
|...............|...........|
|...............|...........|
|...............|...........|
|...............|...........|
|...............|...........|
|___.___.___.___|___.___.___|
The Duijvestijn code for this is {{3,2,2},{1,1,2},{4,1},{3}}
Solutions for n = 1..10: 1 {{1}}
2 {{1, 1}, {1, 1}}
3 {{2, 1}, {1}, {1, 1, 1}}
4 {{2, 2}, {2, 1, 1}, {1, 1}}
5 {{3, 2}, {1, 1}, {2, 1, 2}, {1}}
6 {{3, 3}, {3, 2, 1}, {1}, {1, 1, 1}}
7 {{4, 3}, {1, 2}, {3, 1, 1}, {2, 2}}
8 {{4, 4}, {4, 2, 2}, {2, 1, 1}, {1, 1}}
9 {{5, 4}, {1, 1, 2}, {4, 2, 1}, {3}, {2}}
10 {{5, 5}, {5, 3, 2}, {1, 1}, {2, 1, 2}, {1}}
- H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, C3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ed Wynn, Table of n, a(n) for n = 1..120
- J. H. Conway, Mrs. Perkins's quilt, Proc. Camb. Phil. Soc., 60 (1964), 363-368.
- A. J. W. Duijvestijn, Table I
- A. J. W. Duijvestijn, Table II
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Ed Pegg, Jr., Mrs Perkins's Quilts (best known values to 40000)
- G. B. Trustrum, Mrs Perkins's quilt, Proc. Cambridge Philos. Soc., 61 1965 7-11.
- Eric Weisstein's World of Mathematics, Mrs. Perkins's Quilt
- Ed Wynn, Exhaustive generation of 'Mrs Perkins's quilt' square dissections for low orders, arXiv:1308.5420 [math.CO], 2013-2014.
- Ed Wynn, Exhaustive generation of 'Mrs. Perkins's quilt' square dissections for low orders, Discrete Math. 334 (2014), 38--47. MR3240464
A217149
Largest possible side length for a perfect squared square of order n; or 0 if no such square exists.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 192, 332, 479, 661, 825, 1179, 1544, 2134, 2710, 3641, 4988, 6391, 8430, 11216, 15039, 20242
Offset: 1
A014529
Largest convex area that can be tiled with n equilateral triangles whose sides s_k are relatively prime, i.e., gcd(s_1,...,s_n) = 1.
Original entry on oeis.org
1, 2, 3, 7, 11, 20, 36, 71, 146, 260, 495, 860, 1559, 2831, 5114
Offset: 1
From _Peter Kagey_, Jul 31 2017: (Start)
For n = 6 a convex polygon with area 20 is:
*-------*
/ \ / \
/ \ / \
/ \ / \
*---*---* \
\ / \ / \
*---*-----------*
The sides are relatively prime because gcd(1, 1, 1, 2, 2, 3) = 1. (End)
- Robert T. Wainwright, quoted by Ian Stewart, Math. Recreations, Scientific American, Jul 15 1997, p. 96.
- Hugo Pfoertner, Illustrations of configurations for n <= 11
- Hugo Pfoertner, Illustration of configuration for n = 12, based on personal communication from _Peter Munn_
- Hugo Pfoertner, Illustration of configuration for n = 13, based on data in A289944 from _Peter Munn_
- Rainer Rosenthal, Illustration of configuration for n = 14, based on description in A289944 from _Peter Munn_
- Rainer Rosenthal, Illustration of configuration for n = 15, based on description in A289944 from _Peter Munn_
- Ian Stewart, Die unscheinbare Schwester der goldenen Zahl, Spektrum der Wissenschaft, Dossier 02/2003: Mathematische Unterhaltungen II, 55-57.
A290821
Side length of largest equilateral triangle that can be made from n or fewer equilateral triangles with integer sides s_k, subject to gcd(s_1,s_2,...,s_n) = 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 39, 49
Offset: 1
a(12) = 16:
*
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
+ +
/ \
*---+---*---+---+---+---+---+---+---*
/ \ / \ / \
+ + + + + +
/ \ / \ / \
*---*---* + + +
/ \ / \ / \ / \
+ *---*---+---+---* + +
/ \ / \ / \
+ + + + + +
/ \ / \ / \
+ + + + + +
/ \ / \ / \
+ + + + + +
/ \ / \ / \
*---+---+---+---+---*---+---+---+---*---+---+---+---+---+---+---*
A014529 gives greatest area of any convex polygon constructable from such triangles.
A089047 is this sequence's equivalent for squares.
Definition modified and 5 terms prepended by
Peter Munn, Mar 14 2018
A089046
Least edge-length of a square dissectable into at least n squares in the Mrs. Perkins's quilt problem.
Original entry on oeis.org
1, 2, 2, 2, 3, 3, 4, 5, 6, 8, 10, 14, 18, 24, 30, 40, 54, 71, 92, 121, 155, 210, 266, 360, 476, 642, 833, 1117, 1485, 1967, 2595, 3465, 4534, 5995
Offset: 1
- H. T. Croft, K. J. Falconer, and R. K. Guy, Section C3 in Unsolved Problems in Geometry, New York: Springer, 1991.
- M. Gardner, "Mrs. Perkins's Quilt and Other Square-Packing Problems," Mathematical Carnival, New York: Vintage, 1977.
- Stuart E. Anderson, Mrs Perkins's Quilts
- J. H. Conway, Mrs. Perkins's Quilt, Proc. Cambridge Phil. Soc. 60, 363-368, 1964.
- Ed Pegg, Jr., Mrs. Perkin's Quilts
- Ed Pegg Jr., Richard K. Guy, Mrs. Perkins's Quilts (Wolfram Demonstrations Project)
- Ed Pegg Jr., Richard K. Guy, Mrs. Perkins's Quilts Notebook source code
- G. B. Trustrum, Mrs. Perkins's Quilt, Proc. Cambridge Phil. Soc. 61, 7-11, 1965.
- Eric W. Weisstein's World of Mathematics, Mrs. Perkins's Quilt
- Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissections for low orders, arXiv:1308.5420 [math.CO], 2013-2014.
Confirmed a(30) as best known, added a(31) as best known. -
Stuart E Anderson, Apr 21 2013
Using James Williams recent discoveries of 15 million simple perfect squared squares in orders 31 to 44 I was able to extend the sequence of best currently known values for optimal quilts from a(32) to a(44). -
Stuart E Anderson, Apr 21 2013
Using Anderson and Milla's enumeration of order 31 and 32 perfect squared squares, improved conjectures for a(32) and a(33) were obtained -
Stuart E Anderson, Sep 16 2013
a(29) corrected and further terms added by
Ed Pegg Jr, Jul 06 2017
A338861
a(n) is the largest area of a rectangle which can be dissected into n squares with integer sides s_i, i = 1 .. n, and gcd(s_1,...,s_n) = 1.
Original entry on oeis.org
1, 2, 6, 15, 42, 143, 399, 1190, 4209, 10920, 37245, 109886, 339745, 1037186, 3205734, 9784263, 29837784, 93313919, 289627536
Offset: 1
a(6) = 11*13 = 143.
Dissection of the 11 X 13 rectangle into 6 squares:
.
+-----------+-------------+
| | |
| | |
| 6 X 6 | 7 X 7 |
| | |
| | |
+---------+-+ |
| +-+-----+-------+
| 5 X 5 | | |
| | 4 X 4 | 4 X 4 |
| | | |
+---------+-------+-------+
.
a(19) = 16976*17061 = 289627536.
Dissection of the 16976 X 17061 rectangle into 19 squares:
.
+----------------+-------------+
| | |
| | |
| | 7849 |
| 9212 | |
| | |
| | |
| |------+------|
|________________| | |
| | see | 4109 |
| |Rosenthal| |
| | link +-+------+
| 7764 |-------| |
| | | 5018 |
| | 4279 | |
| | | |
+-------------+-------+--------+
.
This sequence and
A089047 are effectively analogs for dissecting (or tiling) rectangles and squares respectively. Analogs using equilateral triangular tiles are
A014529 and
A290821 respectively.
a(11)-a(17) from
Hugo Pfoertner based on data from squaring.net website, Nov 17 2020
A340919
Sorted sizes of the 55 squares used in the first known squared square of dimension 4205 X 4205 found by Roland Sprague in 1938.
Original entry on oeis.org
13, 29, 35, 39, 50, 52, 65, 78, 87, 91, 104, 116, 117, 130, 140, 143, 145, 174, 182, 195, 203, 221, 232, 234, 247, 261, 270, 286, 290, 299, 305, 312, 319, 325, 340, 375, 406, 429, 435, 493, 522, 551, 565, 575, 615, 638, 665, 667, 696, 705, 725, 957, 1040, 1885, 2320
Offset: 1
- Stuart Anderson, Roland Percival Sprague (1894-1967), history and bibliography on squaring.net.
- James Grime, A Nice Square, Numberphile video, 2017.
- David Moews, Squared rectangles, 2007 (provides Bouwcamp code of square).
- Roland P. Sprague, Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate, Mathematische Zeitschrift, 45, 607-608, 1939.
- R. Sprague, An example of a dissection of the square into pairwise unequal squares, English translation.
Showing 1-7 of 7 results.
Comments