A132195
Number of three-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
1, 7, 12, 23, 47, 84, 172, 335, 590, 1000, 1858, 3284, 6083, 10816, 19539, 35586, 65309, 120625, 224763, 420658, 790885, 1494738
Offset: 3
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
- J. M. Chick, Carmichael number variable relations: three-prime Carmichael numbers up to 10^24, arXiv:0711.2915 [math.NT], 2007-2008, Table 1, p. 34.
- Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning Carmichael numbers, Mathematics of Computation, Vol. 71, No. 238 (2002), pp. 883-908.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A174613
Number of five-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 27, 146, 492, 1336, 3156, 7082, 14938, 29282, 55012, 100707, 178063, 306310, 514381, 846627, 1370257
Offset: 0
For n=6, the smallest Carmichael number with 5 prime factors is 825265 = 5*7*17*19*73.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A174612
Number of four-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 19, 55, 144, 314, 619, 1179, 2102, 3639, 6042, 9938, 16202, 25758, 40685, 63343, 98253, 151566, 232742
Offset: 0
For n=5, the smallest Carmichael number with 4 prime factors is 41041 = 7*11*13*41.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A174614
Number of six-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 99, 459, 1714, 5270, 14401, 36907, 86696, 194306, 414660, 849564, 1681744, 3230120, 6034046
Offset: 0
For n=9: the smallest Carmichael number with 6 prime factors is 321197185 = 5*19*23*29*37*137.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A174615
Number of seven-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 41, 262, 1340, 5359, 19210, 60150, 172234, 460553, 1159167, 2774702, 6363475, 14056367
Offset: 0
The smallest Carmichael number with 7 prime factors is 5394826801 = 7*13*17*23*31*67*73, and there is one other 10-digit example, so a(10)=2.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A174616
Number of eight-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 89, 655, 3622, 16348, 63635, 223997, 720406, 2148017, 6015901, 16005646
Offset: 0
The smallest Carmichael number with 8 prime factors is 232250619601 = 7*11*13*17*31*37*73*163, and there are 6 others, so a(12) = 7.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A174617
Number of nine-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 27, 170, 1436, 8835, 44993, 196391, 762963, 2714473, 8939435
Offset: 0
The smallest Carmichael number with 9 prime factors is 9746347772161 = 7*11*13*17*19*31*37*41*641, so a(13)=1..
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A299711
Number of eleven-prime Carmichael numbers less than 10^n.
Original entry on oeis.org
1, 49, 576, 5804, 42764, 262818
Offset: 17
60977817398996785 = 5*7*17*19*23*37*53*73*79*89*233 is the only Carmichael number with eleven prime factors below 10^17, so a(17) = 1.
For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see
A132195,
A174612,
A174613,
A174614,
A174615,
A174616,
A174617,
A299710,
A299711.
A338442
Carmichael numbers with 10 prime factors.
Original entry on oeis.org
1436697831295441, 1493812621027441, 2094319836529921, 2349991949342401, 2842648863161185, 2859959706040801, 3455134500424321, 3871703982953521, 4177950872896801, 4289150794129201, 4937378437571041, 5071419883911745, 5778659093725441, 6665161459969441, 6682056104892961
Offset: 1
1436697831295441 = 11*13*19*29*31*37*41*43*71*127 and 10, 12, 18, 28, 30, 36, 40, 42, 70, 126 all divide 1436697831295440.
Cf.
A006931 (Least Carmichael number with n prime factors).
Cf.
A299710 (Number of terms less than 10^n).
A338443
Carmichael numbers with 11 prime factors.
Original entry on oeis.org
60977817398996785, 105083995864811041, 107473646345582881, 132819104923908481, 145671955835893201, 161802381510126721, 165167398073764801, 206063729626916161, 263076030916096321, 292433912163313921, 292561243007134465, 337365329710615921, 388219799621120545
Offset: 1
60977817398996785 = 5*7*17*19*23*37*53*73*79*89*233 and 4, 6, 16, 18, 22, 36, 52, 72, 78, 88, 232 all divide 60977817398996784.
Cf.
A006931 (Least Carmichael number with n prime factors).
Cf.
A299710 (Number of terms less than 10^n).
Showing 1-10 of 10 results.
Comments