cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299730 Irregular triangle read by rows: T(n,k) is the number of partitions of 3*n having exactly k prime parts; n >= 0, 0 <= k <= floor( 3*n / 2 ).

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 1, 6, 9, 8, 5, 2, 12, 20, 19, 14, 8, 3, 1, 19, 41, 42, 34, 21, 12, 5, 2, 37, 72, 88, 74, 53, 31, 18, 8, 3, 1, 58, 136, 161, 155, 115, 77, 46, 25, 12, 5, 2, 102, 226, 307, 291, 241, 168, 110, 65, 35, 18, 8, 3, 1
Offset: 0

Views

Author

J. Stauduhar, Feb 17 2018

Keywords

Comments

Sequence of row lengths = A001651.

Examples

			The irregular triangle T(n, k) begins:
3n\k  0   1   2   3   4   5   6   7   8   9
0:    1
3:    1   2
6:    3   4   3   1
9:    6   9   8   5   2
12:  12  20  19  14   8   3   1
15:  19  41  42  34  21  12   5   2
18:  37  72  88  74  53  31  18   8   3   1
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)*`if`(isprime(i), x^j, 1), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(3*n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 03 2018
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]*If[PrimeQ[i], x^j, 1], {j, 0, n/i}]]];
    T[n_] := CoefficientList[b[3n, 3n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Mar 08 2021, after Alois P. Heinz *)

Formula

T(n,k) = A222656(3n,k).