cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A299755 Triangle read by rows in which row n is the strict integer partition with FDH number n.

Original entry on oeis.org

1, 2, 3, 4, 2, 1, 5, 3, 1, 6, 4, 1, 7, 3, 2, 8, 5, 1, 4, 2, 9, 10, 6, 1, 11, 4, 3, 5, 2, 7, 1, 12, 3, 2, 1, 13, 8, 1, 6, 2, 5, 3, 14, 4, 2, 1, 15, 9, 1, 7, 2, 10, 1, 5, 4, 6, 3, 16, 11, 1, 8, 2, 4, 3, 1, 17, 5, 2, 1, 18, 7, 3, 6, 4, 12, 1, 19, 9, 2, 20, 13, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9) (10) (6,1) (11) (4,3) (5,2) (7,1) (12) (3,2,1) (13) (8,1) (6,2) (5,3) (14) (4,2,1) (15).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Join@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}]

A299757 Weight of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 5, 4, 6, 5, 7, 5, 8, 6, 6, 9, 10, 7, 11, 7, 7, 8, 12, 6, 13, 9, 8, 8, 14, 7, 15, 10, 9, 11, 9, 9, 16, 12, 10, 8, 17, 8, 18, 10, 10, 13, 19, 11, 20, 14, 12, 11, 21, 9, 11, 9, 13, 15, 22, 9, 23, 16, 11, 12, 12, 10, 24, 13, 14, 10, 25, 10, 26, 17
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.
In analogy with the Heinz number correspondence between integer partitions and positive integers (see A056239), FDH numbers give a correspondence between strict integer partitions and positive integers.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Total[FDfactor[n]/.FDrules],{n,nn}]

A305829 Factor n into distinct Fermi-Dirac primes (A050376), normalize by replacing every instance of the k-th Fermi-Dirac prime with k, then multiply everything together.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 3, 6, 4, 7, 6, 8, 5, 8, 9, 10, 6, 11, 12, 10, 7, 12, 6, 13, 8, 12, 15, 14, 8, 15, 9, 14, 10, 20, 18, 16, 11, 16, 12, 17, 10, 18, 21, 24, 12, 19, 18, 20, 13, 20, 24, 21, 12, 28, 15, 22, 14, 22, 24, 23, 15, 30, 27, 32, 14, 24, 30, 24, 20, 25
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. Then a(n) = s_1 * ... * s_k.
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Times@@(FDfactor[n]/.FDrules),{n,nn}]
  • PARI
    \\ here isfd is membership test for A050376.
    isfd(n)={my(e=isprimepower(n)); e && e == 1<Andrew Howroyd, Aug 02 2018

A305830 Combined weight of the n-th FDH set-system. Factor n into distinct Fermi-Dirac primes (A050376), normalize by replacing every instance of the k-th Fermi-Dirac prime with k, then add up their FD-weights (A064547).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 1, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 3, 2, 3, 3, 3, 2, 1, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 3, 3, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. Then a(n) = w(s_1) + ... + w(s_k) where w = A064547.

Examples

			Sequence of FDH set-systems (a list containing all finite sets of finite sets of positive integers) begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{2}}
   5: {{3}}
   6: {{},{1}}
   7: {{4}}
   8: {{},{2}}
   9: {{1,2}}
  10: {{},{3}}
  11: {{5}}
  12: {{1},{2}}
  13: {{1,3}}
  14: {{},{4}}
  15: {{1},{3}}
  16: {{6}}
  17: {{1,4}}
  18: {{},{1,2}}
  19: {{7}}
  20: {{2},{3}}
  21: {{1},{4}}
  22: {{},{5}}
  23: {{2,3}}
  24: {{},{1},{2}}
  25: {{8}}
  26: {{},{1,3}}
  27: {{1},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Total[Length/@(FDfactor/@(FDfactor[n]/.FDrules))],{n,nn}]

A305831 Number of connected components of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.

Examples

			Let f = A050376. The FD-factorization of 1683 is 9*11*17 = f(6)*f(7)*f(10). The connected components of {6,7,10} are {{7},{6,10}}, so a(1683) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[zsm[FDfactor[n]/.FDrules]],{n,nn}]

A305832 Number of connected components of the n-th FDH set-system.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. The n-th FDH set-system is obtained by repeating this factorization on each index s_i.

Examples

			Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    nn=100;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]],{n,nn}]

A316268 FDH numbers of connected strict integer partitions.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 36, 37, 39, 41, 43, 45, 47, 49, 51, 53, 59, 61, 64, 65, 67, 69, 71, 73, 79, 81, 83, 85, 87, 89, 92, 97, 101, 103, 107, 108, 109, 111, 113, 115, 117, 119, 121, 124, 127, 129, 131, 135, 137, 139, 144
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set or strict partition S is said to be connected if G(S) is a connected graph.

Examples

			Sequence of connected strict integer partitions begins (1), (2), (3), (4), (5), (6), (7), (8), (4,2), (9), (10), (11), (12), (13), (6,2).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDrules=MapIndexed[(#1->#2[[1]])&,Array[FDfactor,nn,1,Union]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[nn],Length[csm[primeMS/@(FDfactor[#]/.FDrules)]]==1&]
Showing 1-7 of 7 results.