cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299822 Product of Euler's totient and the squarefree kernel, a(n) = phi(n)*rad(n).

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 42, 8, 18, 40, 110, 24, 156, 84, 120, 16, 272, 36, 342, 80, 252, 220, 506, 48, 100, 312, 54, 168, 812, 240, 930, 32, 660, 544, 840, 72, 1332, 684, 936, 160, 1640, 504, 1806, 440, 360, 1012, 2162, 96, 294, 200, 1632, 624, 2756, 108, 2200, 336, 2052, 1624
Offset: 1

Views

Author

R. J. Mathar, Feb 19 2018

Keywords

Comments

A permutation of A323333. - Amiram Eldar, Sep 19 2020

Crossrefs

Programs

  • Maple
    A299822 := proc(n)
        local a,p,e,pe;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ; e:= pe[2] ;
            a := a*p*(p-1)*p^(e-1) ;
        end do:
        a ;
    end proc:
    seq(A299822(n),n=1..130) ;
  • Mathematica
    Array[EulerPhi[#] SelectFirst[Reverse@ Divisors@ #, SquareFreeQ] &, 58] (* Michael De Vlieger, Feb 20 2018 *)
    f[p_, e_] := (p-1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n) = eulerphi(n)*factorback(factorint(n)[, 1]); \\ Michel Marcus, Jun 24 2019

Formula

a(n) = A000010(n)*A007947(n) = n*A173557(n).
Dirichlet g.f.: zeta(s-1)*Product_{p prime} (1 - 2*p^(1-s) + p^(2-s)), corrected by Vaclav Kotesovec, Dec 18 2019
Multiplicative with a(p^e) = p*(p-1)*p^(e-1).
a(n) = n*abs(A023900(n)). (Trivially rephrasing a formula in A173557.) - Omar E. Pol, Feb 19 2018
a(2^e) = 2^e. (Special case of above.) - Omar E. Pol, Feb 19 2018
A003557(n) | a(n). - R. J. Mathar, Feb 26 2018
From Vaclav Kotesovec, Dec 18 2019: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s-2) * Product_{primes p} (1 + 2*p^(3-2*s) - p^(4-2*s) - 2*p^(1-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.2867474284344787341078927... (End)
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p-1)^2) = 2.826419... (A065485). - Amiram Eldar, Sep 19 2020
G.f. for a signed version of the sequence: Sum_{n >= 1} mu(n)*n^2*x^n/(1 - x^n)^2 = Sum_{n >= 1} (-1)^omega(n)*a(n)*x^n = x - 2*x^2 - 6*x^3 - 4*x^4 - 20*x^5 + 12*x^6 - 42*x^7 - 8*x^8 - 18*x^9 + 40*x^10 - ..., where mu(n) is the Möbius function A008683(n) and omega(n) = A001221(n) is the number of distinct primes dividing n. - Peter Bala, Mar 05 2022