cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065473 Decimal expansion of the strongly carefree constant: Product_{p prime} (1 - (3*p-2)/(p^3)).

Original entry on oeis.org

2, 8, 6, 7, 4, 7, 4, 2, 8, 4, 3, 4, 4, 7, 8, 7, 3, 4, 1, 0, 7, 8, 9, 2, 7, 1, 2, 7, 8, 9, 8, 3, 8, 4, 4, 6, 4, 3, 4, 3, 3, 1, 8, 4, 4, 0, 9, 7, 0, 5, 6, 9, 9, 5, 6, 4, 1, 4, 7, 7, 8, 5, 9, 3, 3, 6, 6, 5, 2, 2, 4, 3, 1, 3, 1, 9, 4, 3, 2, 5, 8, 2, 4, 8, 9, 1, 2, 6, 8, 2, 5, 5, 3, 7, 4, 2, 3, 7, 4, 6, 8, 5, 3, 6, 4, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - Charles R Greathouse IV, Nov 14 2011
The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - Amiram Eldar, Aug 04 2020

Examples

			0.2867474284344787341078927127898384...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56.

Crossrefs

Programs

  • Mathematica
    digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 11 2016 *)
  • PARI
    prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - Michel Marcus, Apr 16 2016
The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - Amiram Eldar, May 24 2020
Equals A065472 * A227929 = A065472 / A098198. - Amiram Eldar, Aug 04 2020

Extensions

Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003
More digits from Vaclav Kotesovec, Dec 19 2019

A009262 a(n) = lcm(n, phi(n)).

Original entry on oeis.org

1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 110, 12, 156, 42, 120, 16, 272, 18, 342, 40, 84, 110, 506, 24, 100, 156, 54, 84, 812, 120, 930, 32, 660, 272, 840, 36, 1332, 342, 312, 80, 1640, 84, 1806, 220, 360, 506, 2162, 48, 294, 100, 1632, 312, 2756, 54, 440, 168, 684, 812, 3422
Offset: 1

Views

Author

Keywords

Comments

This is a divisibility sequence: if n divides m, a(n) divides a(m). - Franklin T. Adams-Watters, Mar 30 2010
a(n) = n iff n is in A007694.
a(n) is a divisor of A299822(n). It is a proper divisor iff n is in A069209. - Max Alekseyev, Oct 11 2024

Crossrefs

Programs

Formula

a(n) = A000010(n) * A109395(n) = n * A076512(n) = A299822(n) / gcd(A007947(n),phi(A007947(n))). - Max Alekseyev, Oct 11 2024

A304409 If n = Product (p_j^k_j) then a(n) = Product (p_j*(k_j + 1)).

Original entry on oeis.org

1, 4, 6, 6, 10, 24, 14, 8, 9, 40, 22, 36, 26, 56, 60, 10, 34, 36, 38, 60, 84, 88, 46, 48, 15, 104, 12, 84, 58, 240, 62, 12, 132, 136, 140, 54, 74, 152, 156, 80, 82, 336, 86, 132, 90, 184, 94, 60, 21, 60, 204, 156, 106, 48, 220, 112, 228, 232, 118, 360, 122, 248, 126, 14, 260
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(12) = a(2^2*3) = 2*(2 + 1) * 3*(1 + 1) = 36.
		

Crossrefs

Cf. A000005, A000026, A000040, A001221, A005117, A007947, A016754 (numbers n such that a(n) is odd), A034444, A038040, A064549, A299822, A304407, A304408, A304410 (fixed points), A304411, A304412.

Programs

  • Mathematica
    a[n_] := Times @@ (#[[1]] (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 65}]
    Table[DivisorSigma[0, n] Last[Select[Divisors[n], SquareFreeQ]], {n, 65}]
  • PARI
    a(n)={numdiv(n)*factorback(factorint(n)[, 1])} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A007947(n).
a(p^k) = p*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*n if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 2/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, Jun 06 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-1) + 2/p^(s-1) + 1/p^(2*s) - 2/p^s) * ((p^s - p)/(p^s - 1))^2.
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - (3*p^2 + p - 1)/(p^2 * (p+1)^2)) = 0.40693068229776748114138817391056656864938379...,
f'(2) = f(2) * Sum_{p prime} 2*(3*p^4-3*p^2+1) * log(p) / ((p-1)*(p+1)*(p^4+2*p^3-2*p^2-p+1)) = f(2) * 2.2612432627709318567813765271568350301741329636853...
and gamma is the Euler-Mascheroni constant A001620. (End)

A090780 a(n) = n*Product_{p prime, p|n} (p - 1)/2.

Original entry on oeis.org

1, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 30, 8, 136, 9, 171, 20, 63, 55, 253, 12, 50, 78, 27, 42, 406, 30, 465, 16, 165, 136, 210, 18, 666, 171, 234, 40, 820, 63, 903, 110, 90, 253, 1081, 24, 147, 50, 408, 156, 1378, 27, 550, 84, 513, 406, 1711, 60, 1830, 465, 189
Offset: 1

Views

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

a(2n+1) is the conjectured value of the length of period of sequence of Genocchi number of first kind read modulo (2n + 1) (cf. A001469).

Crossrefs

Programs

  • Maple
    A023900 := proc(n) add( d*numtheory[mobius](d),d=numtheory[divisors](n)) ; end proc:
    A001221 := proc(n) nops(numtheory[factorset](n)) ; end proc:
    A076479 := proc(n) (-1)^A001221(n) ; end proc:
    A034444 := proc(n) 2^A001221(n) ;end proc:
    A090780 := proc(n) n/A076479(n)/A034444(n) *A023900(n); end proc:
    seq(A090780(n),n=1..20) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    a[n_] := Module[{f, p, e}, fun[p_, e_] := (p - 1)*p^e/2;
    If[n == 1, 1, Times @@ (fun @@@ FactorInteger[n])]]; Array[a, 50] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    a(n) = my(f=factor(n)[,1]); n*prod(k=1, #f, (f[k]-1)/2); \\ Michel Marcus, May 26 2019
    
  • PARI
    a(n) = eulerphi(n)*factorback(factorint(n)[, 1]/2) \\ Jianing Song, Aug 11 2023

Formula

a(n) = (n/(-2)^omega(n))*(Sum_{d|n} d*mu(d)) = n*A023900(n)/(A076479(n)*A034444(n)).
a(n) = n*A173557(n)/2. - R. J. Mathar, Apr 14 2011
From Jianing Song, Nov 22 2018: (Start)
Multiplicative with a(p^e) = (p - 1)*p^e/2 = A000217(p-1)*p^(e-1).
a(n) = A299822(n)/2^A001221(n).
a(prime(n)) = A034953(n).
a(n) is odd if and only if n = A004614(k) or 2*A004614(k). (End)
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 2/(p-1)^2) = 5.72671092223951683002237367406848393189560038246828458038126468772919585... - Vaclav Kotesovec, Sep 20 2020
From Jianing Song, Aug 11 2023: (Start)
a(n) = phi(n) * Product_{p|n, p prime} (p/2), where phi = A000010.
Equals A000010(n)*A007947(n)/2^A001221(n). (End)

A088847 a(n) = sigma(A087979(n)) / phi(A087979(n)).

Original entry on oeis.org

1, 1, 3, 4, 4, 6, 6, 8, 9, 8, 10, 12, 12, 14, 15, 16, 16, 18, 18, 20, 21, 20, 22, 24, 25, 24, 27, 28, 28, 30, 30, 32, 33, 32, 35, 36, 36, 36, 39, 40, 40, 42, 42, 44, 45, 46, 46, 48, 49, 50, 51, 52, 52, 54, 55, 56, 57, 56, 58, 60, 60, 62, 63, 64, 65, 66, 66, 68, 69, 70, 70, 72, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Labos Elemer, Nov 17 2003

Keywords

Comments

Note that A087979(n) is a balanced number (A020492), hence this sequence is well-defined. - Max Alekseyev, Oct 10 2024
For all n, a(n) <= n and a(n) divides A299822(n). - Max Alekseyev, Oct 11 2024

Examples

			While A088830 includes special balanced numbers, A087979 does not include per definition. Nevertheless, it seems that A087979 consists only of balanced numbers. This is provable at least for special cases.
		

Crossrefs

Extensions

a(24)-a(35) from Amiram Eldar, Dec 05 2019 (calculated from the data at A087979)
Terms a(36) onward from Max Alekseyev, Oct 10 2024
Showing 1-5 of 5 results.