cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A304408 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*(k_j + 1)).

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 12, 4, 6, 16, 20, 12, 24, 24, 32, 5, 32, 12, 36, 24, 48, 40, 44, 16, 12, 48, 8, 36, 56, 64, 60, 6, 80, 64, 96, 18, 72, 72, 96, 32, 80, 96, 84, 60, 48, 88, 92, 20, 18, 24, 128, 72, 104, 16, 160, 48, 144, 112, 116, 96, 120, 120, 72, 7, 192, 160, 132, 96, 176, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(20) = a(2^2*5) = (2 - 1)*(2 + 1) * (5 - 1)*(1 + 1) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul((i[1]-1)*(i[2]+1), i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 05 2021
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 70}]
    Table[DivisorSigma[0, n] EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]], {n, 70}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*(e+1))} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*abs(A023900(n)) = A000005(n)*A173557(n) = A000005(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*phi(n) if n is a squarefree (A005117), where omega() = A001221 and phi() = A000010.

A304411 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*k_j).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 9, 8, 18, 12, 24, 14, 24, 24, 12, 18, 24, 20, 36, 32, 36, 24, 36, 12, 42, 12, 48, 30, 72, 32, 15, 48, 54, 48, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 48, 48, 16, 36, 72, 84, 54, 36, 72, 72, 80, 90, 60, 144, 62, 96, 64, 18, 84, 144, 68, 108, 96, 144, 72, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(24) = a(2^3*3) = (2 + 1)*3 * (3 + 1)*1 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 72}]
    Table[Total[Select[Divisors[n], SquareFreeQ]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 72}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p+1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*A048250(n) = A000005(n/A007947(n))*A000203(A007947(n)).
a(p^k) = (p + 1)*k where p is a prime and k > 0.
a(n) = Product_{p|n} (p + 1) if n is a squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A072691 * A330596 = 0.6156455744... . - Amiram Eldar, Nov 30 2022

A304412 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*(k_j + 1)).

Original entry on oeis.org

1, 6, 8, 9, 12, 48, 16, 12, 12, 72, 24, 72, 28, 96, 96, 15, 36, 72, 40, 108, 128, 144, 48, 96, 18, 168, 16, 144, 60, 576, 64, 18, 192, 216, 192, 108, 76, 240, 224, 144, 84, 768, 88, 216, 144, 288, 96, 120, 24, 108, 288, 252, 108, 96, 288, 192, 320, 360, 120, 864, 124, 384, 192, 21, 336, 1152, 136, 324
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(36) = a(2^2*3^2) = (2 + 1)*(2 + 1) * (3 + 1)*(2 + 1) = 108.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 68}]
    Table[DivisorSigma[0, n] Total[Select[Divisors[n], SquareFreeQ]], {n, 68}]
  • PARI
    a(n)={numdiv(n)*sumdiv(n, d, moebius(d)^2*d)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A048250(n) = A000005(n)*A000203(A007947(n)).
a(p^k) = (p + 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*Product_{p|n} (p + 1) if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 1/p^(2*s-1)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (p^s-p)^2 * (p^(2*s)+2*p^(s+1)-p) / (p^(2*s) * (p^s-1)^2).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442200999165592736603350326637210188586431417098049414226842591...,
f'(2) = f(2) * Sum_{p prime} 2*(2*p^2-1)*log(p) / ((p^2-1)*(p^2+p-1)) = f(2) * 1.799151495460164053607059266860868724519705035904425832307664926571...
and gamma is the Euler-Mascheroni constant A001620. (End)

A304407 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*k_j).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 3, 4, 4, 10, 4, 12, 6, 8, 4, 16, 4, 18, 8, 12, 10, 22, 6, 8, 12, 6, 12, 28, 8, 30, 5, 20, 16, 24, 8, 36, 18, 24, 12, 40, 12, 42, 20, 16, 22, 46, 8, 12, 8, 32, 24, 52, 6, 40, 18, 36, 28, 58, 16, 60, 30, 24, 6, 48, 20, 66, 32, 44, 24, 70, 12, 72, 36, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (2 - 1)*2 * (3 - 1)*1 * (5 - 1)*1 = 16.
		

Crossrefs

Programs

  • Maple
    seq(mul((p-1)*padic[ordp](n, p), p in numtheory[factorset](n)), n=1..100); # Ridouane Oudra, Jun 06 2025
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 75}]
    Table[EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 75}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*abs(A023900(n)) = A005361(n)*A173557(n) = A005361(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*k where p is a prime and k > 0.
a(n) = phi(n) if n is a squarefree (A005117), where phi() = A000010.
a(A002110(k)) = A005867(k).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - 4/p^2 + 3/p^3 + 1/p^4 - 1/p^5) = 0.2644703894... . - Amiram Eldar, Nov 30 2022
a(n) = (-1)^A001221(n) * (Sum_{d1|n} Sum_{d2|n} mu(d1)*gcd(d1,d2)). - Ridouane Oudra, Jun 06 2025

A304410 Numbers k such that k = Product (p_j^e_j) = Product (p_j*(e_j + 1)).

Original entry on oeis.org

1, 8, 9, 72, 13440, 21120, 24960, 29568, 32640, 34944, 36480, 44160, 45696, 49280, 51072, 54912, 55680, 58240, 59520, 61824, 71040, 71808, 76160, 77952, 78720, 80256, 82560, 83328, 84864, 85120, 90240, 91520, 94848, 97152, 99456, 101760, 103040, 110208, 113280, 114816, 115584, 117120, 119680
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Comments

Numbers k such that A000005(k)*A007947(k) = k.
Fixed points of A304409.
All terms are refactorable numbers (A033950).

Examples

			13440 is a term because 13440 = 2^7*3*5*7 = 2*(7 + 1) * 3*(1 + 1) * 5*(1 + 1) * 7*(1 + 1).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (#[[1]] (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Select[Range[120000], a[#] == # &]
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) * vecprod(f[, 1]) == k;} \\ Amiram Eldar, Jan 31 2025
Showing 1-5 of 5 results.