cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002618 a(n) = n*phi(n).

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
Offset: 1

Views

Author

Keywords

Comments

Also Euler phi function of n^2.
For n >= 3, a(n) is also the size of the automorphism group of the dihedral group of order 2n. This automorphism group is isomorphic to the group of transformations x -> ax + b, where a, b and x are integers modulo n and a is coprime to n. Its order is n*phi(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 18 2001
Order of metacyclic group of polynomial of degree n. - Artur Jasinski, Jan 22 2008
It appears that this sequence gives the number of permutations of 1, 2, 3, ..., n that are arithmetic progressions modulo n. - John W. Layman, Aug 27 2008
The conjecture by Layman is correct. Obviously any such permutation must have an increment that is prime to n, and almost as obvious that any such increment will work, with any starting value; hence phi(n) * n total. - Franklin T. Adams-Watters, Jun 09 2009
Consider the numbers from 1 to n^2 written line by line as an n X n square: a(n) = number of numbers that are coprime to all their horizontal and vertical immediate neighbors. - Reinhard Zumkeller, Apr 12 2011
n -> a(n) is injective: a(m) = a(n) implies m = n. - Franz Vrabec, Dec 12 2012 (See Mathematics Stack Exchange link for a proof.)
a(p) = p*(p-1) a pronic number, see A036689 and A002378. - Fred Daniel Kline, Mar 30 2015
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
From Jianing Song, Aug 25 2023: (Start)
a(n) is the order of the holomorph (see the Wikipedia link) of the cyclic group of order n. Note that Hol(C_n) and Aut(D_{2n}) are isomorphic unless n = 2, where D_{2n} is the dihedral group of order 2*n. See the Wordpress link.
The odd-indexed terms form a subsequence of A341298: the holomorph of an abelian group of odd order is a complete group. See Theorem 3.2, Page 618 of the W. Peremans link. (End)

Examples

			a(4) = 8 since phi(4) = 2 and 4 * 2 = 8.
a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
		

References

  • Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A047916.
Cf. A002619, A011755 (partial sums), A047918, A000010, A053650, A053191, A053192, A036689, A058161, A009262, A082473 (same terms, sorted into ascending order), A256545, A327172 (a left inverse), A327173, A065484.
Subsequence of A323333.

Programs

Formula

Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
a(n) = A173557(n) * A102631(n). - R. J. Mathar, Mar 30 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n)/2 = (1/n) * Sum_{k=1..n-1, gcd(k,n)=1} k, n >= 2 (see A023896 and A076512/A109395). (End)
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
a(n) = A009195(n) * A009262(n). - Michel Marcus, Oct 24 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
a(n) = A082473(A327173(n)), A327172(a(n)) = n. -- Antti Karttunen, Sep 29 2019
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024

Extensions

Better description from Labos Elemer, Feb 18 2000

A036689 Product of a prime and the previous number.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1

Views

Author

Keywords

Comments

Records in A002618. - Artur Jasinski, Jan 23 2008
Also records in A174857. - Vladimir Shevelev, Mar 31 2010

Examples

			2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
		

Crossrefs

Twice the terms of A008837.
Subsequence of A002378 (oblong numbers).
Column 1 of A257251. (Row 1 of A257252.)
Column 2 of A379010.

Programs

Formula

a(n) = prime(n) * (prime(n) - 1).
a(n) = phi(prime(n)^2) = A000010(A001248(n)).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A000040(n) * A006093(n) = A001248(n) - A000040(n).
A006530(a(n)) = A000040(n). (End)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)

Extensions

Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020

A174824 a(n) = period of the sequence {m^m, m >= 1} modulo n.

Original entry on oeis.org

1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 110, 12, 156, 42, 60, 16, 272, 18, 342, 20, 42, 110, 506, 24, 100, 156, 54, 84, 812, 60, 930, 32, 330, 272, 420, 36, 1332, 342, 156, 40, 1640, 42, 1806, 220, 180, 506, 2162, 48, 294, 100, 816, 156, 2756, 54, 220, 168, 342
Offset: 1

Views

Author

Keywords

Comments

This is a divisibility sequence: if n divides m, a(n) divides a(m).
We have the equality n = a(n) for numbers n in A124240, which is related to Carmichael's function (A002322). The largest values of a(n) occur when n is prime, in which case a(n) = n*(n-1). - T. D. Noe, Feb 21 2014

Examples

			For n=3, 1^1 == 1 (mod 3), 2^2 == 1 (mod 3), 3^3 == 0 (mod 3), etc. The sequence of residues 1, 1, 0, 1, 2, 0, 1, 1, 0, ... has period 6, so a(3) = 6. - _Michael B. Porter_, Mar 13 2018
		

Crossrefs

Programs

  • Mathematica
    Table[LCM[n, CarmichaelLambda[n]], {n, 100}] (* T. D. Noe, Feb 20 2014 *)
  • PARI
    a(n)=local(ps);ps=factor(n)[,1]~;for(k=1,#ps,n=lcm(n,ps[k]-1));n
    
  • PARI
    a(n) = lcm(n, lcm(znstar(n)[2])); \\ Michel Marcus, Mar 18 2016; corrected by Michel Marcus, Nov 13 2019
    
  • PARI
    apply( {A174824(n)=lcm(lcm([p-1|p<-factor(n)[,1]]),n)}, [1..99]) \\ [...] = znstar(n)[2], but 3x faster. - M. F. Hasler, Nov 13 2019

Formula

a(n) = lcm(n, A173614(n)) = lcm(n, A002322(n)) = lcm(n, A011773(n)).
If n and m are relatively prime, a(n*m) = lcm(a(n), a(m)); a(p^k) = (p-1)*p^k for p prime and k > 0.
a(n) = n*A268336(n). - M. F. Hasler, Nov 13 2019

A052106 a(n) = lcm(n, n - phi(n)).

Original entry on oeis.org

0, 2, 3, 4, 5, 12, 7, 8, 9, 30, 11, 24, 13, 56, 105, 16, 17, 36, 19, 60, 63, 132, 23, 48, 25, 182, 27, 112, 29, 330, 31, 32, 429, 306, 385, 72, 37, 380, 195, 120, 41, 210, 43, 264, 315, 552, 47, 96, 49, 150, 969, 364, 53, 108, 165, 224, 399, 870, 59, 660, 61, 992, 189
Offset: 1

Views

Author

Labos Elemer, Jan 20 2000

Keywords

Comments

See also A009195, A003277, A050384 when totient and cototient give results identical to each other. This sequence is not identical to A009262.
a(n) = n iff n is in A246655. - Ivan Neretin, May 29 2016

Examples

			For n=255, phi(n)=128, cototient(255) = 255 - 128 = 127, a(255) = lcm(255,127) = 32385, while A009262(255) = lcm(255,phi(255)) = 128*255 = 32640;
for n=72, phi(72)=24, A051953(72) = 72 - 24 = 48, a(72) = lcm(72,48) = 144, while A009262(72) = lcm(72,24) = 72.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM[n, n - EulerPhi[n]], {n, 63}] (* Ivan Neretin, May 29 2016 *)

Formula

a(n) = lcm(n, A051953(n)).

A052100 a(n) = lcm(n, phi(n), n - phi(n)).

Original entry on oeis.org

0, 2, 6, 4, 20, 12, 42, 8, 18, 60, 110, 24, 156, 168, 840, 16, 272, 36, 342, 120, 252, 660, 506, 48, 100, 1092, 54, 336, 812, 1320, 930, 32, 8580, 2448, 9240, 72, 1332, 3420, 1560, 240, 1640, 420, 1806, 1320, 2520, 6072, 2162, 96, 294, 300, 31008, 2184, 2756
Offset: 1

Views

Author

Labos Elemer, Jan 20 2000

Keywords

Comments

If n is a power of a prime p, then a(n) = n*(p-1). - Robert Israel, May 20 2015

Examples

			For n=72, phi(72)=24, cototient(72)=48, a(72) = lcm(72,24,48) = 144.
For n=255, phi(255)=128, cototient(255)=127, a(255) = lcm(255,128,127) = 4145280.
		

Crossrefs

Programs

  • Maple
    seq(ilcm(n, numtheory:-phi(n),n - numtheory:-phi(n)), n=1..100); # Robert Israel, May 20 2015
  • Mathematica
    Table[LCM[n, EulerPhi[n], n - EulerPhi[n]], {n, 53}] (* Ivan Neretin, May 20 2015 *)

Formula

a(n) = lcm(n, A000010(n), A051953(n)).
For n=p prime, phi(p)=p-1, cototient(p)=p-1, a(p)=p(p-1)=A009262(p).
a(n) = n*A000010(n)*A051953(n)/A009195(n)^2. - Robert Israel, May 20 2015

A058251 LCM of n-th primorial number and its Euler totient.

Original entry on oeis.org

1, 2, 6, 120, 1680, 36960, 5765760, 1568286720, 536354058240, 24672286679040, 2861985254768640, 2661646286934835200, 3545312854197200486400, 5814313080883408797696000, 10500649424075436288638976000
Offset: 0

Views

Author

Labos Elemer, Dec 05 2000

Keywords

Examples

			a(6) = LCM(30030,5760) = 5765760.
		

Crossrefs

Programs

  • Maple
    [seq(ilcm(product(ithprime(k), k=1..m), product(ithprime(k)-1, k=1..m)), m=1..20)];
  • Mathematica
    LCM[#,EulerPhi[#]]&/@Rest[FoldList[Times,1,Prime[Range[15]]]] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    P(n) = prod(k=1, n, prime(k)); \\ A002110
    a(n) = my(p= P(n)); lcm(p, eulerphi(p)); \\ Michel Marcus, Apr 27 2022

Formula

a(n) = LCM(A002110(n), A000010(A002110(n))) = LCM(A002110(n), A005867(n)).
a(n) = A009262(A002110(n)). - Michel Marcus, Apr 27 2022

Extensions

a(0)=1 inserted by Jamie Morken, Apr 27 2022

A328651 Composite k for which lcm(k, phi(k)) + lcm(k, tau(k)) = lcm(k, sigma(k)).

Original entry on oeis.org

135, 546, 672, 9585, 24570, 51510, 63855, 190008, 251370, 323730, 372438, 486180, 510570, 723550, 819000, 1058910, 1282365, 1284192, 1356030, 3506390, 5416200, 5604480, 6298625, 15593760, 17813250, 18009000, 20740590, 26759370, 27027000, 27081000, 29795040
Offset: 1

Views

Author

Marius A. Burtea, Oct 23 2019

Keywords

Comments

Composite numbers k verifying equation A009230(k) + A009262(k) = A009242(k).
For any prime number p >= 3 the equality lcm(k, phi(k)) + lcm(k, tau(k)) = lcm(k, sigma(k)) is satisfied.
The sequence terms are the composite numbers for which the equality is true.

Examples

			For k = 135 = 3^3 * 5, tau(k) = 4 * 2 = 2^3, phi(k) = 2 * 3^2 * 4 = 2^3 * 3^2 , sigma(k) = 2^4 * 3 * 5, lcm(k, tau(k)) + lcm(k, phi(k)) =  2^3 * 3^3 * 5 + 2^3 * 3^3 * 5 = 2^4 * 3^3 * 5 and lcm(k, sigma(k)) = lcm(3^3 * 5, 2^4 * 3 * 5) = 2^4 * 3^3 * 5.
		

Crossrefs

Programs

  • Magma
    [k: k in [1..6000000]| not IsPrime(k) and Lcm(k,NumberOfDivisors(k))+Lcm(k,EulerPhi(k)) eq Lcm(k,SumOfDivisors(k))];
    
  • Mathematica
    aQ[n_] := CompositeQ[n] && LCM[n, EulerPhi[n]] + LCM[n, DivisorSigma[0, n]] == LCM[n, DivisorSigma[1, n]]; Select[Range[3*10^6], aQ] (* Amiram Eldar, Oct 23 2019 *)
  • PARI
    isok(k) = !isprime(k) && (lcm(k, numdiv(k)) + lcm(k, eulerphi(k)) == lcm(k, sigma(k))); \\ Michel Marcus, Oct 24 2019
Showing 1-7 of 7 results.