A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.
0, 1, 0, 3, 4, 1, 0, 9, 24, 22, 8, 1, 0, 27, 108, 171, 136, 57, 12, 1, 0, 81, 432, 972, 1200, 886, 400, 108, 16, 1, 0, 243, 1620, 4725, 7920, 8430, 5944, 2810, 880, 175, 20, 1, 0, 729, 5832, 20898, 44280, 61695, 59472, 40636, 19824, 6855, 1640, 258, 24, 1
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 0: 0 1 1: 0 3 4 1 2: 0 9 24 22 8 1 3: 0 27 108 171 136 57 12 1 4: 0 81 432 972 1200 886 400 108 16 1
References
- V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10301 (rows 0 <= n <= 100, flattened.)
- Ryo Hanaki, Pseudo diagrams of knots, links and spatial graphs, Osaka Journal of Mathematics, Vol. 47 (2010), 863-883.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Carolina Medina, Jorge Ramírez-Alfonsín and Gelasio Salazar, On the number of unknot diagrams, arXiv:1710.06470 [math.CO], 2017.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
Programs
-
Mathematica
row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
-
Maxima
g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$ a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$ T : []$ for i:1 thru 11 do T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$ T;
-
PARI
T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k); tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018
Formula
Extensions
Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018
Comments