cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300048 G.f. A(x) satisfies A(x)^3 = 1 + x*A(x) + x*A(x)^2 + x*A(x)^6.

Original entry on oeis.org

1, 1, 2, 7, 29, 131, 627, 3124, 16032, 84162, 449828, 2439550, 13391105, 74256824, 415357737, 2340775363, 13278009018, 75753246286, 434392031856, 2502289328542, 14473290097526, 84023214062635, 489424396591995, 2859551104564120, 16754209625090980, 98415932763515679, 579475837597933632, 3419452319373566239, 20219028961691299994
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2018

Keywords

Comments

Compare to: G(x)^3 = 1 + x*G(x) + x*G(x)^2 + x*G(x)^3 holds when G(x) = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 131*x^5 + 627*x^6 + 3124*x^7 + 16032*x^8 + 84162*x^9 + 449828*x^10 + 2439550*x^11 + 13391105*x^12 + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 76*x^4 + 348*x^5 + 1681*x^6 + 8432*x^7 + 43495*x^8 + 229260*x^9 + 1229371*x^10 + ...
A(x)^6 = 1 + 6*x + 27*x^2 + 122*x^3 + 579*x^4 + 2862*x^5 + 14588*x^6 + 76146*x^7 + 405039*x^8 + 2187756*x^9 + 11967426*x^10 + ...
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 147*x^4 + 684*x^5 + 3341*x^6 + 16896*x^7 + 87702*x^8 + 464566*x^9 + 2501178*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = (1 + x*A + x*A^2 + x*A^6 +x*O(x^n))^(1/3) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) ~ sqrt(1 + sqrt((9 + 40*sqrt(3))/13)) * (9 + 6*sqrt(3) + sqrt(153 + 100*sqrt(3)))^n / (sqrt(Pi) * n^(3/2) * 2^(n + 3/2) * 3^(n + 3/4)). - Vaclav Kotesovec, Aug 11 2021
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(n+2*k,n-1-k) for n > 0. - Seiichi Manyama, Aug 05 2023