cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A364736 G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 0, -3, -3, 17, 45, -90, -546, 130, 5832, 7074, -53625, -159214, 374517, 2419131, -728364, -30011530, -37519884, 307731042, 940757526, -2343385995, -15421126275, 5164279686, 203045257272, 255851517115, -2186669342070, -6760669947375, 17391580425180
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(n+2*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(n+2*k,n-1-k) for n > 0.

A364758 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)).

Original entry on oeis.org

1, 1, 3, 14, 76, 450, 2818, 18352, 123028, 843345, 5884227, 41650479, 298352365, 2158751879, 15754446893, 115830820439, 857147952469, 6379136387303, 47715901304501, 358529599468636, 2704884469806606, 20481615947325089, 155605509972859999, 1185779099027494848
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(4*n-3*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=-1, t=4, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 11 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(4*n-3*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 11 2024: (Start)
G.f. A(x) satisfies A(x)^3 = 1 + x*A(x) + x*A(x)^5 + x*A(x)^6.
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3/(1 + x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)

A349017 G.f. A(x) satisfies A(x) = 1/(1 - x/(1 - x*A(x)))^3.

Original entry on oeis.org

1, 3, 9, 34, 147, 684, 3341, 16896, 87702, 464566, 2501178, 13646625, 75289022, 419301351, 2354121750, 13309905653, 75715795119, 433063793430, 2488921730886, 14366319150072, 83246947358766, 484082947060300, 2823980738817453, 16522429720210884, 96928401308507100
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=1, t=3) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
a(n) ~ sqrt((1 - r*s)*(1 - r - r*s) / (1 - r*(s-1))) / (2*sqrt(Pi)*n^(3/2)* r^(n+1)), where r = 0.16019884639474132810520949540299923469792581229191347... and s = 2.80076422793129845097661115192234873280320027349745080... are real roots of the system of equations (-1 + r*s)^3/(-1 + r + r*s)^3 = s, (3*r^2*(-1 + r*s)^2)/(-1 + r + r*s)^4 = 1. - Vaclav Kotesovec, Nov 15 2021
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A300048. - Seiichi Manyama, Dec 04 2024

A378685 G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)^3).

Original entry on oeis.org

1, 1, 8, 88, 1126, 15716, 232069, 3564835, 56382489, 912031280, 15018257510, 250913307393, 4242722219425, 72470224174650, 1248608968982903, 21673752440979879, 378677335852165297, 6654158090059397480, 117523324766568499072, 2085095374834405245007
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=1, t=7, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^6/(1 - x*A(x)^3)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).

A363560 Expansion of g.f. A(x) satisfying A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9).

Original entry on oeis.org

1, 1, 3, 18, 126, 966, 7863, 66696, 583111, 5217513, 47547405, 439777242, 4117802109, 38956162023, 371795456373, 3575401032544, 34611064585803, 336998629754631, 3298200003722997, 32428037256038775, 320151289224740949, 3172536384239678856, 31544584654878015766
Offset: 0

Views

Author

Paul D. Hanna, Aug 12 2023

Keywords

Comments

Compare to: G(x)^3 = 1 + x*(G(x) + G(x)^2 + G(x)^3) holds when G(x) = 1/(1-x).
Conjecture: a(n) == 0 (mod 3) for n > 0 except when n == 1 (mod 7).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 126*x^4 + 966*x^5 + 7863*x^6 + 66696*x^7 + 583111*x^8 + 5217513*x^9 + 47547405*x^10 + ...
such that
A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9).
Also,
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7).
RELATED TABLE.
The table of coefficients in A(x)^n begins:
n=1: [1, 1,  3,  18,  126,   966,   7863,   66696, ...];
n=2: [1, 2,  7,  42,  297,  2292,  18738,  159450, ...];
n=3: [1, 3, 12,  73,  522,  4059,  33354,  284886, ...];
n=4: [1, 4, 18, 112,  811,  6360,  52566,  450888, ...];
n=5: [1, 5, 25, 160, 1175,  9301,  77370,  666780, ...];
n=6: [1, 6, 33, 218, 1626, 13002, 108919,  943524, ...];
n=7: [1, 7, 42, 287, 2177, 17598, 148540, 1293937, ...];
n=8: [1, 8, 52, 368, 2842, 23240, 197752, 1732928, ...];
n=9: [1, 9, 63, 462, 3636, 30096, 258285, 2277756, ...];
...
from which one can verify the formulas involving powers of A(x).
RELATED SERIES.
Let G(x) = 1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^5) )
where
G(x) = 1 + x + 2*x^2 + 11*x^3 + 61*x^4 + 380*x^5 + 2502*x^6 + 17163*x^7 + 121312*x^8 + 877370*x^9 + 6461765*x^10 + ...
then
A(x) = G(x*A(x)),
and so
A(x) = (1/x) * Series_Reversion( x/G(x) );
thus,
x*A(x) = (A(x) - 1) / (1 + (A(x) - 1)*(A(x)^2 + A(x)^5) )
which is equivalent to
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7).
TERMS MODULO 3.
It appears that a(n) == 0 (mod 3) for n > 0 except when n == 1 (mod 7).
The residues of a(7*k + 1) modulo 3, for k >= 0, begin
a(7*k + 1) (mod 3) = [1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = (1 + x*(A + A^2 + A^9) +x*O(x^n))^(1/3) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7).
(2) A(x)^2 = 1 + x*(A(x) + A(x)^2 - A(x)^3 + A(x)^5 - A(x)^6 + A(x)^8) .
(3) A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9).
(4) A(x)^4 = 1 + x*(A(x) + A(x)^2 + A(x)^4 - A(x)^6 + A(x)^7 + A(x)^10).
(5) A(x)^5 = 1 + x*(A(x) + A(x)^2 + A(x)^4 + A(x)^5 - A(x)^6 + A(x)^8 + A(x)^11).
(6) A(x)^6 = 1 + x*(A(x) + A(x)^2 + A(x)^4 + A(x)^5 + A(x)^9 + A(x)^12).
(7) A(x) = (1/x) * Series_Reversion( x/(1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^5) ) ) ).

A363573 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).

Original entry on oeis.org

1, 1, 3, 16, 99, 670, 4804, 35855, 275635, 2167577, 17354844, 140994899, 1159398760, 9631155422, 80703507043, 681333999628, 5789823864323, 49484286592503, 425092050147999, 3668385302806058, 31786451503719132, 276447315011186576, 2412336247105063011, 21114946136742383146
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 99*x^4 + 670*x^5 + 4804*x^6 + 35855*x^7 + 275635*x^8 + 2167577*x^9 + 17354844*x^10 + ...
such that
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
RELATED TABLE.
The table of coefficients in A(x)^n begins:
n=1: [1, 1,  3,  16,   99,   670,   4804,   35855,   275635, ...];
n=2: [1, 2,  7,  38,  239,  1634,  11798,   88506,   683045, ...];
n=3: [1, 3, 12,  67,  429,  2967,  21594,  162945,  1263183, ...];
n=4: [1, 4, 18, 104,  679,  4756,  34922,  265244,  2066591, ...];
n=5: [1, 5, 25, 150, 1000,  7101,  52645,  402725,  3155125, ...];
n=6: [1, 6, 33, 206, 1404, 10116,  75775,  584148,  4603911, ...];
n=7: [1, 7, 42, 273, 1904, 13930, 105490,  819918,  6503553, ...];
n=8: [1, 8, 52, 352, 2514, 18688, 143152, 1122312,  8962615, ...];
n=9: [1, 9, 63, 444, 3249, 24552, 190326, 1505727, 12110400, ...];
...
from which one can verify the formulas involving powers of A(x).
RELATED SERIES.
Let G(x) = 1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^3) )
where
G(x) = 1 + x + 2*x^2 + 9*x^3 + 42*x^4 + 219*x^5 + 1202*x^6 + 6867*x^7 + 40378*x^8 + 242782*x^9 + 1485836*x^10 + ...
then
A(x) = G(x*A(x)),
and so
A(x) = (1/x) * Series_Reversion( x/G(x) );
thus,
x*A(x) = (A(x) - 1) / (1 + (A(x) - 1)*(A(x)^2 + A(x)^3) )
which is equivalent to
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1-A+x*(A-A^3+A^5), A), x, n+1), x, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 14 2023
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = 1 + x*(A - A^3 + A^5) +x*O(x^n) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
(2) A(x)^2 = 1 + x*(A(x) + A(x)^2 - A(x)^3 - A(x)^4 + A(x)^5 + A(x)^6).
(3) A(x)^3 = 1 + x*(A(x) + A(x)^2 - A(x)^4 + A(x)^6 + A(x)^7).
(4) A(x)^4 = 1 + x*(A(x) + A(x)^2 + A(x)^7 + A(x)^8).
(5) A(x)^5 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^8 + A(x)^9).
(6) A(x)^6 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^6 + A(x)^9 + A(x)^10).
(7) A(x)^7 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^6 + A(x)^7 + A(x)^10 + A(x)^11).
(8) A(x) = (1/x) * Series_Reversion( x/(1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^3) ) ) ).
(9) A(x) = 1 / A(-x*A(x)^5).

A364723 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^4).

Original entry on oeis.org

1, 1, 2, 8, 38, 196, 1073, 6120, 35968, 216304, 1324676, 8232981, 51796538, 329229344, 2111031444, 13638557196, 88695018723, 580153216512, 3814285704000, 25192499164320, 167075960048996, 1112162062296061, 7428213584196010, 49766086788057256
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n+3*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(n+3*k,n-1-k) for n > 0.

A364734 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^5).

Original entry on oeis.org

1, 1, 2, 9, 48, 276, 1687, 10750, 70597, 474478, 3247844, 22563904, 158693152, 1127661358, 8083795761, 58390722901, 424562043703, 3104994695198, 22825260066996, 168564068029385, 1249985066423749, 9303815610715531, 69483859839881494, 520527161650519576
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n+4*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(n+4*k,n-1-k) for n > 0.

A378425 Expansion of (1/x) * Series_Reversion( x / (1 + x + x^2 * (1 + x)^3) ).

Original entry on oeis.org

1, 1, 2, 7, 24, 82, 297, 1121, 4317, 16900, 67185, 270480, 1100122, 4513809, 18661618, 77666327, 325117967, 1368001765, 5782686120, 24545144206, 104573104040, 447036252525, 1916918691196, 8243075111450, 35538551601880, 153584392913986, 665201585797986, 2887012910233897
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^2*(1+x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(n+2*k+1, n-2*k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A378406(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] (1 + x + x^2 * (1 + x)^3)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(n+2*k+1,n-2*k).

A378427 Expansion of (1/x) * Series_Reversion( x / (1 + x + x^3 * (1 + x)^3) ).

Original entry on oeis.org

1, 1, 1, 2, 8, 29, 88, 253, 775, 2575, 8797, 29833, 100635, 342408, 1181727, 4120223, 14435969, 50738813, 179038408, 634696939, 2259677734, 8072923814, 28924907573, 103915759961, 374302237154, 1351541722226, 4891132336481, 17736792240766, 64440831300682
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^3*(1+x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(n+2*k+1, n-3*k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A378407(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] (1 + x + x^3 * (1 + x)^3)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(n+2*k+1,n-3*k).
Showing 1-10 of 10 results.