cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300184 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (2*x + 2)^n + (x^2 - 1)*(x + 2)^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 4, 7, 4, 1, 0, 12, 26, 19, 6, 1, 0, 32, 88, 88, 39, 8, 1, 0, 80, 272, 360, 230, 71, 10, 1, 0, 192, 784, 1312, 1140, 532, 123, 12, 1, 0, 448, 2144, 4368, 4872, 3164, 1162, 211, 14, 1, 0, 1024, 5632, 13568, 18592, 15680, 8176, 2480, 367, 16, 1, 0, 2304, 14336, 39936, 65088, 67872, 46368, 20304, 5262, 655, 18, 1
Offset: 0

Views

Author

Keywords

Comments

Let L(n;x) = x*(2*x + 2)^n. Then T(n,k) is obtained from the expansion of the polynomial P(n;x) = (x + 2)*P(n-1;x) + L(n-1;x), with P(0;x) = x^2.
Let an n-chain link be the planar diagram that consists of n unknotted circles, linked together in a closed chain. Then T(n,k) is the number of diagrams having k components that are obtained by smoothing each double point (crossing). Kauffman defines the 'smoothing' of a framed 4-graph at a vertex v as "any of the two framed 4-graphs obtained by removing v and repasting the edges" (see links).

Examples

			The triangle T(n,k) begins:
n\k  0     1      2      3      4      5      6      7     8    9  10 11
0:   0     0      1
1:   0     1      2      1
2:   0     4      7      4      1
3:   0    12     26     19      6      1
4:   0    32     88     88     39      8      1
5:   0    80    272    360    230     71     10      1
6:   0   192    784   1312   1140    532    123     12     1
7:   0   448   2144   4368   4872   3164   1162    211    14    1
8:   0  1024   5632  13568  18592  15680   8176   2480   367   16   1
9:   0  2304  14336  39936  65088  67872  46368  20304  5262  655  18  1
		

Crossrefs

Row sums: A000302 (powers of 4).

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[(x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)), {x, 0, nmax + 2}, {y, 0, nmax}], y], x]] // Flatten (* G. C. Greubel, Oct 18 2018 *)
    Table[SeriesCoefficient[x^2*(x+2)^n + x*Sum[(x+2)^(n-j-1)*(2*x+2)^j, {j, 0, n-1}], {x, 0, k}], {n, 0, 10}, {k, 0, n+2}]//Flatten  (* Michael De Vlieger, Oct 20 2018 *)
  • Maxima
    T(n, k) := ratcoef((2*x + 2)^n + (x^2 - 1)*(x + 2)^n, x, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n + 2);
    
  • PARI
    {T(n,k) = if(k==0, 0, if(k==1, n*2^(n-1), if(k==n+2, 1, T(n-1, k-1) + 2*T(n-1,k) + 2^(n-1)*binomial(n-1,k-1) )))};
    for(n=0,10, for(k=0,n+2, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 20 2018

Formula

T(n,0) = 0, T(n,1) = n*2^(n-1), T(0,2) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + A038208(n-1,k-1).
T(n,1) = A001787(n).
T(n,n) = A295077(n).
T(n,n+1) = A005843(n).
G.f.: (x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)).

Extensions

New name by Franck Maminirina Ramaharo, Oct 17 2018