cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300218 Number of solutions to 1 +- 3 +- 5 +- ... +- (2*n-1) == 0 mod n.

Original entry on oeis.org

1, 2, 2, 4, 4, 12, 10, 36, 30, 104, 94, 344, 316, 1172, 1096, 4132, 3856, 14572, 13798, 52432, 49940, 190652, 182362, 699416, 671092, 2581112, 2485534, 9586984, 9256396, 35791472, 34636834, 134221860, 130150588, 505290272, 490853416, 1908874584, 1857283156
Offset: 1

Views

Author

Seiichi Manyama, Feb 28 2018

Keywords

Examples

			Solutions for n = 7:
----------------------------
1 +3 +5 +7 +9 +11 +13 =  49.
1 +3 +5 -7 +9 +11 +13 =  35.
1 +3 -5 +7 -9 +11 +13 =  21.
1 +3 -5 -7 -9 +11 +13 =   7.
1 -3 +5 +7 +9 -11 +13 =  21.
1 -3 +5 -7 +9 -11 +13 =   7.
1 -3 -5 +7 +9 +11 -13 =   7.
1 -3 -5 +7 -9 -11 +13 =  -7.
1 -3 -5 -7 +9 +11 -13 =  -7.
1 -3 -5 -7 -9 -11 +13 = -21.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i<1, `if`(n=0, 1, 0),
          add(b(irem(n+j, m), i-2, m), j=[i, m-i]))
        end:
    a:= n-> b(n-1, 2*n-3, n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 01 2018
  • Mathematica
    Table[With[{s = Range[1, (2 n - 1), 2]}, Count[Map[Total[s #] &, Take[Tuples[{-1, 1}, Length@ s], -2^(n - 1)]], ?(Divisible[#, n] &)]], {n, 22}] (* _Michael De Vlieger, Mar 01 2018 *)