A300268 Number of solutions to 1 +- 4 +- 9 +- ... +- n^2 == 0 (mod n).
1, 0, 2, 4, 6, 0, 10, 48, 32, 0, 94, 344, 370, 0, 1268, 4608, 3856, 0, 13798, 55960, 50090, 0, 182362, 721952, 690496, 0, 2485592, 9586984, 9256746, 0, 34636834, 135335936, 130150588, 0, 493452348, 1908875264, 1857293524, 0, 7049188508, 27603824928
Offset: 1
Keywords
Examples
Solutions for n = 7: ------------------------------- 1 +4 +9 +16 +25 +36 +49 = 140. 1 +4 +9 +16 +25 +36 -49 = 42. 1 +4 +9 -16 -25 -36 +49 = -14. 1 +4 +9 -16 -25 -36 -49 = -112. 1 +4 -9 +16 -25 -36 +49 = 0. 1 +4 -9 +16 -25 -36 -49 = -98. 1 -4 +9 -16 +25 -36 +49 = 28. 1 -4 +9 -16 +25 -36 -49 = -70. 1 -4 -9 +16 +25 -36 +49 = 42. 1 -4 -9 +16 +25 -36 -49 = -56.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..3334 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0), add(b(irem(n+j, m), i-1, m), j=[i^2, m-i^2])) end: a:= n-> b(0, n-1, n): seq(a(n), n=1..60); # Alois P. Heinz, Mar 01 2018
-
Mathematica
b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0], Sum[b[Mod[n + j, m], i - 1, m], {j, {i^2, m - i^2}}]]; a[n_] := b[0, n - 1, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
-
PARI
a(n) = my (v=vector(n,k,k==1)); for (i=2, n, v = vector(n, k, v[1 + (k-i^2)%n] + v[1 + (k+i^2)%n])); v[1] \\ Rémy Sigrist, Mar 01 2018
-
Ruby
def A(n) ary = [1] + Array.new(n - 1, 0) (1..n).each{|i| i2 = 2 * i * i a = ary.clone (0..n - 1).each{|j| a[(j + i2) % n] += ary[j]} ary = a } ary[(n * (n + 1) * (2 * n + 1) / 6) % n] / 2 end def A300268(n) (1..n).map{|i| A(i)} end p A300268(100)