A300275 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - x^n)^n.
1, 2, 5, 10, 23, 40, 85, 147, 276, 474, 858, 1421, 2484, 4079, 6850, 11137, 18333, 29277, 47329, 74768, 118703, 185614, 290782, 449568, 696009, 1066258, 1632376, 2479057, 3759611, 5661568, 8512308, 12722132, 18974109, 28157619, 41690937, 61453929, 90379783
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add( b(n-j)*sigma[2](j), j=1..n)/n) end: a:= n-> add(b(d)*mobius(n/d), d=divisors(n)): seq(a(n), n=1..40); # Alois P. Heinz, Jun 21 2018
-
Mathematica
nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^n)^n, {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten s[n_] := SeriesCoefficient[Product[1/(1 - x^k)^k, {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]
Formula
a(n) = Sum_{d|n} mu(n/d)*A000219(d).
Comments