A300301 Number of ways to choose a partition, with odd parts, of each part of a partition of n into odd parts.
1, 1, 1, 3, 3, 6, 10, 15, 21, 37, 56, 80, 127, 183, 280, 428, 616, 893, 1367, 1944, 2846, 4223, 6049, 8691, 12670, 18128, 25921, 37529, 53338, 75738, 108561, 153460, 216762, 308829, 433893, 612006, 864990, 1211097, 1697020, 2386016, 3331037, 4648229, 6503314
Offset: 0
Keywords
Examples
The a(6) = 10 twice-partitions using odd partitions: (5)(1), (3)(3), (113)(1), (3)(111), (111)(3), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) end: g:= proc(n, i) option remember; `if`(n=0 or i=1, 1, g(n, i-2)+`if`(i>n, 0, b(i)*g(n-i, i))) end: a:= n-> g(n, n-1+irem(n,2)): seq(a(n), n=0..50); # Alois P. Heinz, Mar 05 2018
-
Mathematica
nn=50; ser=Product[1/(1-PartitionsQ[n]x^n),{n,1,nn,2}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
Formula
O.g.f.: Product_{n odd} 1/(1 - A000009(n)x^n).