cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300301 Number of ways to choose a partition, with odd parts, of each part of a partition of n into odd parts.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 37, 56, 80, 127, 183, 280, 428, 616, 893, 1367, 1944, 2846, 4223, 6049, 8691, 12670, 18128, 25921, 37529, 53338, 75738, 108561, 153460, 216762, 308829, 433893, 612006, 864990, 1211097, 1697020, 2386016, 3331037, 4648229, 6503314
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 10 twice-partitions using odd partitions: (5)(1), (3)(3), (113)(1), (3)(111), (111)(3), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-2)+`if`(i>n, 0, b(i)*g(n-i, i)))
        end:
    a:= n-> g(n, n-1+irem(n,2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 05 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-PartitionsQ[n]x^n),{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

O.g.f.: Product_{n odd} 1/(1 - A000009(n)x^n).