cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A300300 Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1).
The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
          `if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^PartitionsQ[n],{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.

A300439 Number of odd enriched p-trees of weight n (all outdegrees are odd).

Original entry on oeis.org

1, 1, 2, 2, 5, 7, 18, 29, 75, 132, 332, 651, 1580, 3268, 7961, 16966, 40709, 89851, 215461, 484064, 1159568, 2641812, 6337448, 14622880, 35051341, 81609747, 196326305, 459909847, 1107083238, 2611592457, 6299122736, 14926657167, 36069213786, 85809507332
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd enriched p-tree of weight n > 0 is either a single node of weight n, or a finite odd-length sequence of at least 3 odd enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(6) = 7 odd enriched p-trees: 6, (411), (321), (222), ((111)21), ((211)11), (21111).
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=1+Sum[Times@@f/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Array[f,40]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)) - 1/prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)/2); v} \\ Andrew Howroyd, Aug 26 2018

A358824 Number of twice-partitions of n of odd length.

Original entry on oeis.org

0, 1, 2, 4, 7, 15, 32, 61, 121, 260, 498, 967, 1890, 3603, 6839, 12972, 23883, 44636, 82705, 150904, 275635, 501737, 905498, 1628293, 2922580, 5224991, 9296414, 16482995, 29125140, 51287098, 90171414, 157704275, 275419984, 479683837, 833154673, 1442550486, 2493570655
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)        (4)         (5)
       (11)  (21)       (22)        (32)
             (111)      (31)        (41)
             (1)(1)(1)  (211)       (221)
                        (1111)      (311)
                        (2)(1)(1)   (2111)
                        (11)(1)(1)  (11111)
                                    (2)(2)(1)
                                    (3)(1)(1)
                                    (11)(2)(1)
                                    (2)(11)(1)
                                    (21)(1)(1)
                                    (11)(11)(1)
                                    (111)(1)(1)
                                    (1)(1)(1)(1)(1)
		

Crossrefs

The version for set partitions is A024429.
For odd lengths (instead of length) we have A358334.
The case of odd parts also is A358823.
The case of odd sums also is A358826.
The case of odd lengths also is A358834.
For multiset partitions of integer partitions: A358837, ranked by A026424.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&]],{n,0,10}]
  • PARI
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=vector(n,k,numbpart(k))); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A000041(k)*x^k)) - (1/Product_{k>=1} (1+A000041(k)*x^k)))/2. - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 30 2022

A300436 Number of odd p-trees of weight n (all proper terminal subtrees have odd weight).

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 12, 13, 35, 37, 98, 107, 304, 336, 927, 1037, 3010, 3367, 9585, 10924, 32126, 36438, 105589, 121045, 359691, 412789, 1211214, 1398168, 4188930, 4831708, 14315544, 16636297, 50079792, 58084208, 173370663, 202101971, 611487744, 712709423
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd p-tree of weight n > 0 is either a single node (if n = 1) or a finite sequence of at least 3 odd p-trees whose weights are weakly decreasing odd numbers summing to n.

Examples

			The a(7) = 5 odd p-trees: ((ooo)(ooo)o), (((ooo)oo)oo), ((ooooo)oo), ((ooo)oooo), (ooooooo).
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=b[n]=If[n>1,0,1]+Sum[Times@@b/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&And@@OddQ/@#&]}];
    Table[b[n],{n,40}]

Formula

O.g.f: x + Product_{n odd} 1/(1 - a(n)*x^n) - Sum_{n odd} a(n)*x^n. - Gus Wiseman, Aug 27 2018

Extensions

Name corrected by Gus Wiseman, Aug 27 2018

A358334 Number of twice-partitions of n into odd-length partitions.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 43, 77, 137, 241, 410, 720, 1209, 2073, 3498, 5883, 9768, 16413, 26978, 44741, 73460, 120462, 196066, 320389, 518118, 839325, 1353283, 2178764, 3490105, 5597982, 8922963, 14228404, 22609823, 35875313, 56756240, 89761600, 141410896, 222675765
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(0) = 1 through a(5) = 13 twice-partitions:
  ()  ((1))  ((2))     ((3))        ((4))           ((5))
             ((1)(1))  ((111))      ((211))         ((221))
                       ((2)(1))     ((2)(2))        ((311))
                       ((1)(1)(1))  ((3)(1))        ((3)(2))
                                    ((111)(1))      ((4)(1))
                                    ((2)(1)(1))     ((11111))
                                    ((1)(1)(1)(1))  ((111)(2))
                                                    ((211)(1))
                                                    ((2)(2)(1))
                                                    ((3)(1)(1))
                                                    ((111)(1)(1))
                                                    ((2)(1)(1)(1))
                                                    ((1)(1)(1)(1)(1))
		

Crossrefs

For multiset partitions of integer partitions: A356932, ranked by A356935.
For odd length instead of lengths we have A358824.
For odd sums instead of lengths we have A358825.
For odd sums also we have A358827.
For odd length also we have A358834.
A000041 counts integer partitions.
A027193 counts odd-length partitions, ranked by A026424.
A055922 counts partitions with odd multiplicities, also odd parts A117958.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1), -(n+1))} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - A027193(k)*x^k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022

A300353 Number of strict trees of weight n with odd leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 4, 7, 14, 24, 46, 92, 186, 368, 750, 1529, 3160, 6510, 13590, 28374, 59780, 125732, 266468, 564188, 1202842, 2560106, 5484304, 11732400, 25229068, 54187918, 116938702, 252039411, 545593378, 1179545874, 2560009400, 5550315640, 12075064432
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

This sequence is initially dominated by A300352 but eventually becomes much greater.
A strict tree of weight n > 0 is either a single node of weight n, or a sequence of two or more strict trees with strictly decreasing weights summing to n.

Examples

			The a(8) = 7 strict trees with odd leaves: (71), (53), (((51)1)1), (((31)3)1), (((31)1)3), ((31)31), (((((31)1)1)1)1).
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=d[n]=If[EvenQ[n],0,1]+Sum[Times@@d/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&UnsameQ@@#&]}];
    Table[d[n],{n,40}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = polcoef(x/(1-x^2) + prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 25 2018

Formula

O.g.f: (1 + x/(1-x^2) + Product_{i>0} (1 + a(i)x^i))/2.
a(n) = Sum_{i=1..A000009(n)} A294018(A300351(n,i)).

A300355 Number of enriched p-trees of weight n with odd leaves.

Original entry on oeis.org

1, 1, 1, 3, 6, 16, 47, 132, 410, 1254, 4052, 12818, 42783, 139082, 469924, 1563606, 5353966, 18065348, 62491018, 213391790, 743836996, 2565135934, 8994087070, 31251762932, 110245063771, 385443583008, 1365151504722, 4800376128986, 17070221456536, 60289267885410
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(5) = 16 enriched p-trees of weight with odd leaves:
5,
((31)1), ((((11)1)1)1), (((111)1)1), (((11)(11))1), (((11)11)1), ((1111)1),
(3(11)), (((11)1)(11)), ((111)(11)),
(311), (((11)1)11), ((111)11),
((11)(11)1),
((11)111),
(11111).
		

Crossrefs

Programs

  • Mathematica
    c[n_]:=c[n]=If[EvenQ[n],0,1]+Sum[Times@@c/@y,{y,Select[IntegerPartitions[n],Length[#]>1&]}];
    Table[c[n],{n,30}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = n%2 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f: (1 + x/(1-x^2) + Prod_{i>0} 1/(1 - a(i)x^i))/2.
a(n) = Sum_{i=1..A000009(n)} A299203(A300351(n,i)).

A300862 Solution to 1 = Sum_y Product_{k in y} a(k) for each n > 0, where the sum is over all integer partitions of n with an odd number of parts.

Original entry on oeis.org

1, 1, 0, 0, -1, -1, 0, 1, 1, 0, -2, -3, -2, 2, 7, 6, -3, -15, -19, -2, 32, 54, 24, -64, -153, -123, 95, 389, 444, -43, -966, -1475, -516, 2066, 4414, 3092, -3874, -12480, -12936, 3847, 32445, 45494, 8950, -77282, -147663, -86313, 157456, 435623, 399041, -229616, -1211479, -1535700, -73132
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1-Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Array[a,40]

A300440 Number of odd strict trees of weight n (all outdegrees are odd).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 7, 11, 18, 27, 45, 75, 125, 207, 353, 591, 1013, 1731, 2984, 5122, 8905, 15369, 26839, 46732, 81850, 142932, 251693, 441062, 778730, 1370591, 2425823, 4281620, 7601359, 13447298, 23919512, 42444497, 75632126, 134454505, 240100289
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd strict tree of weight n is either a single node of weight n, or a finite odd-length sequence of at least 3 odd strict trees with strictly decreasing weights summing to n.

Examples

			The a(10) = 7 odd strict trees: 10, (721), (631), (541), (532), ((421)21), ((321)31).
		

Crossrefs

Programs

  • Mathematica
    g[n_]:=g[n]=1+Sum[Times@@g/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&&UnsameQ@@#&]}];
    Array[g,20]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)) - prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)/2); v} \\ Andrew Howroyd, Aug 25 2018

A358823 Number of odd-length twice-partitions of n into partitions with all odd parts.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 10, 20, 29, 58, 83, 150, 230, 399, 605, 1037, 1545, 2547, 3879, 6241, 9437, 15085, 22622, 35493, 53438, 82943, 124157, 191267, 284997, 434634, 647437, 979293, 1452182, 2185599, 3228435, 4826596, 7112683, 10575699, 15530404, 22990800, 33651222
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.
Also the number of odd-length twice-partitions of n into strict partitions.

Examples

			The a(1) = 1 through a(6) = 10 twice-partitions with all odd parts:
  (1)  (11)  (3)        (31)        (5)              (33)
             (111)      (1111)      (311)            (51)
             (1)(1)(1)  (11)(1)(1)  (11111)          (3111)
                                    (3)(1)(1)        (111111)
                                    (11)(11)(1)      (3)(11)(1)
                                    (111)(1)(1)      (31)(1)(1)
                                    (1)(1)(1)(1)(1)  (11)(11)(11)
                                                     (111)(11)(1)
                                                     (1111)(1)(1)
                                                     (11)(1)(1)(1)(1)
The a(1) = 1 through a(6) = 10 twice-partitions into strict partitions:
  (1)  (2)  (3)        (4)        (5)              (6)
            (21)       (31)       (32)             (42)
            (1)(1)(1)  (2)(1)(1)  (41)             (51)
                                  (2)(2)(1)        (321)
                                  (3)(1)(1)        (2)(2)(2)
                                  (21)(1)(1)       (3)(2)(1)
                                  (1)(1)(1)(1)(1)  (4)(1)(1)
                                                   (21)(2)(1)
                                                   (31)(1)(1)
                                                   (2)(1)(1)(1)(1)
		

Crossrefs

This is the odd-length case of A270995.
Requiring odd sums also gives A279374 aerated.
This is the case of A358824 with all odd parts.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
A358334 counts twice-partitions into odd-length partitions.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Flatten[#]]&]],{n,0,10}]
  • PARI
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A000009(k)*x^k)) - (1/Product_{k>=1} (1+A000009(k)*x^k)))/2. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022
Showing 1-10 of 17 results. Next