cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A300443 Number of binary enriched p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 41, 96, 288, 724, 2142, 5838, 17720, 49871, 151846, 440915, 1363821, 4019460, 12460721, 37374098, 116809752, 353904962, 1109745666, 3396806188, 10712261952, 33006706419, 104357272687, 323794643722, 1027723460639, 3204413808420, 10193485256501
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(4) = 8 binary enriched p-trees: 4, (31), (22), ((21)1), ((11)2), (2(11)), (((11)1)1), ((11)(11)).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(j)*a(n-j), j=1..n/2)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    j[n_]:=j[n]=1+Sum[Times@@j/@y,{y,Select[IntegerPartitions[n],Length[#]===2&]}];
    Array[j,40]
    (* Second program: *)
    a[n_] := a[n] = 1 + Sum[a[j]*a[n-j], {j, 1, n/2}];
    a /@ Range[0, 40] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, n\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) = 1 + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y).

A300436 Number of odd p-trees of weight n (all proper terminal subtrees have odd weight).

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 12, 13, 35, 37, 98, 107, 304, 336, 927, 1037, 3010, 3367, 9585, 10924, 32126, 36438, 105589, 121045, 359691, 412789, 1211214, 1398168, 4188930, 4831708, 14315544, 16636297, 50079792, 58084208, 173370663, 202101971, 611487744, 712709423
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd p-tree of weight n > 0 is either a single node (if n = 1) or a finite sequence of at least 3 odd p-trees whose weights are weakly decreasing odd numbers summing to n.

Examples

			The a(7) = 5 odd p-trees: ((ooo)(ooo)o), (((ooo)oo)oo), ((ooooo)oo), ((ooo)oooo), (ooooooo).
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=b[n]=If[n>1,0,1]+Sum[Times@@b/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&And@@OddQ/@#&]}];
    Table[b[n],{n,40}]

Formula

O.g.f: x + Product_{n odd} 1/(1 - a(n)*x^n) - Sum_{n odd} a(n)*x^n. - Gus Wiseman, Aug 27 2018

Extensions

Name corrected by Gus Wiseman, Aug 27 2018

A301368 Regular triangle where T(n,k) is the number of binary enriched p-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 5, 3, 1, 3, 7, 12, 12, 6, 1, 3, 9, 19, 28, 25, 11, 1, 4, 14, 36, 65, 81, 63, 24, 1, 4, 16, 48, 107, 172, 193, 136, 47, 1, 5, 22, 75, 192, 369, 522, 522, 331, 103, 1, 5, 25, 96, 284, 643, 1108, 1420, 1292, 750, 214, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n.

Examples

			Triangle begins:
  1
  1   1
  1   1   1
  1   2   3   2
  1   2   4   5   3
  1   3   7  12  12   6
  1   3   9  19  28  25  11
  1   4  14  36  65  81  63  24
  1   4  16  48 107 172 193 136  47
  1   5  22  75 192 369 522 522 331 103
  ...
The T(6,3) = 7 binary enriched p-trees: ((41)1), ((32)1), (4(11)), ((31)2), ((22)2), (3(21)), ((21)3).
		

Crossrefs

Programs

  • Mathematica
    bintrees[n_]:=Prepend[Join@@Table[Tuples[bintrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]===2&]}],n];
    Table[Length[Select[bintrees[n],Count[#,_Integer,{-1}]===k&]],{n,13},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sum(k=1, n\2, v[k]*v[n-k])); apply(p->Vecrev(p/y), v)}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A300647 Number of same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 10, 2, 2, 2, 2, 2, 42, 1, 2, 10, 2, 2, 138, 2, 2, 2, 34, 2, 1514, 2, 2, 42, 2, 1, 2058, 2, 162, 10, 2, 2, 8202, 2, 2, 138, 2, 2, 207370, 2, 2, 2, 130, 34, 131082, 2, 2, 1514, 2082, 2, 524298, 2, 2, 42, 2, 2, 14725738, 1, 8226, 2058, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 10 odd same-trees:
9,
(333),
(33(111)), (3(111)3), ((111)33)
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1+sumdiv(n, d, if ((d > 1) && (d % 2), a(n/d)^d))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A300862 Solution to 1 = Sum_y Product_{k in y} a(k) for each n > 0, where the sum is over all integer partitions of n with an odd number of parts.

Original entry on oeis.org

1, 1, 0, 0, -1, -1, 0, 1, 1, 0, -2, -3, -2, 2, 7, 6, -3, -15, -19, -2, 32, 54, 24, -64, -153, -123, 95, 389, 444, -43, -966, -1475, -516, 2066, 4414, 3092, -3874, -12480, -12936, 3847, 32445, 45494, 8950, -77282, -147663, -86313, 157456, 435623, 399041, -229616, -1211479, -1535700, -73132
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1-Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Array[a,40]

A300440 Number of odd strict trees of weight n (all outdegrees are odd).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 7, 11, 18, 27, 45, 75, 125, 207, 353, 591, 1013, 1731, 2984, 5122, 8905, 15369, 26839, 46732, 81850, 142932, 251693, 441062, 778730, 1370591, 2425823, 4281620, 7601359, 13447298, 23919512, 42444497, 75632126, 134454505, 240100289
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd strict tree of weight n is either a single node of weight n, or a finite odd-length sequence of at least 3 odd strict trees with strictly decreasing weights summing to n.

Examples

			The a(10) = 7 odd strict trees: 10, (721), (631), (541), (532), ((421)21), ((321)31).
		

Crossrefs

Programs

  • Mathematica
    g[n_]:=g[n]=1+Sum[Times@@g/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&&UnsameQ@@#&]}];
    Array[g,20]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)) - prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)/2); v} \\ Andrew Howroyd, Aug 25 2018

A300648 Number of orderless same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 12, 1, 2, 6, 2, 2, 14, 2, 2, 2, 8, 2, 68, 2, 2, 12, 2, 1, 18, 2, 16, 6, 2, 2, 20, 2, 2, 14, 2, 2, 644, 2, 2, 2, 10, 8, 24, 2, 2, 68, 20, 2, 26, 2, 2, 12, 2, 2, 1386, 1, 22, 18, 2, 2, 30, 16, 2, 6, 2, 2, 4532, 2, 22, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 6 odd orderless same-trees: 9, (333), (33(111)), (3(111)(111)), ((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[Binomial[a[n/d]+d-1,d],{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1 + sumdiv(n, d, if ((d > 1) && (d % 2), binomial(a(n/d) + d - 1, d)))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d binomial(a(n/d) + d - 1, d) where the sum is over odd divisors of n greater than 1.

A300649 Number of same-trees of weight 2n + 1 in which all outdegrees are odd and all leaves greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 10, 1, 1, 3, 3, 1, 3, 1, 1, 62, 1, 2, 3, 1, 3, 3, 1, 1, 158, 3, 1, 3, 1, 1, 254, 3, 1, 1514, 1, 3, 3, 1, 3, 3, 3, 1, 2078, 1, 1, 2461, 1, 1, 3, 1, 3, 8222, 3, 2, 3, 34, 1, 3, 1, 3, 390782, 1, 1, 3, 3, 3, 2198, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(13) = 10 odd same-trees with all leaves greater than 1:
27,
(999),
(99(333)), (9(333)9), ((333)99),
(9(333)(333)), ((333)9(333)), ((333)(333)9),
((333)(333)(333)), (333333333).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}]];
    Table[a[n],{n,1,100,2}]
  • PARI
    f(n) = if (n==1, 1, sumdiv(n, d, if ((d > 1) && (d % 2), f(n/d)^d)));
    a(n) = f(2*n+1); \\ Michel Marcus, Mar 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A300650 Number of orderless same-trees of weight 2n + 1 in which all outdegrees are odd and all leaves greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 1, 1, 3, 3, 1, 3, 1, 1, 19, 1, 2, 3, 1, 3, 3, 1, 1, 21, 3, 1, 3, 1, 1, 28, 3, 1, 68, 1, 3, 3, 1, 3, 3, 3, 1, 25, 1, 1, 71, 1, 1, 3, 1, 3, 27, 3, 2, 3, 8, 1, 3, 1, 3, 1656, 1, 1, 3, 3, 3, 43, 1, 1, 31, 3, 1, 3, 3, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all equal and sum to n.

Examples

			The a(13) = 6 orderless same-trees: 27, (999), (99(333)), (9(333)(333)), ((333)(333)(333)), (333333333).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[Binomial[a[n/d]+d-1,d],{d,Select[Rest[Divisors[n]],OddQ]}]];
    Table[a[n],{n,1,100,2}]
  • PARI
    f(n) = if (n==1, 1, sumdiv(n, d, if ((d > 1) && (d % 2), binomial(f(n/d)+d-1, d))));
    a(n) = f(2*n+1); \\ Michel Marcus, Mar 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_d binomial(a(n/d) + d - 1, d) where the sum is over odd divisors of n greater than 1.

A300652 Number of enriched p-trees of weight 2n + 1 in which all outdegrees and all leaves are odd.

Original entry on oeis.org

1, 2, 4, 12, 40, 136, 496, 1952, 7488, 30368, 123456, 512384, 2129664, 9068672, 38391552, 165642752, 713405952, 3109135872, 13528865792, 59591322624, 261549260800, 1159547047936, 5131968999424, 22883893137408, 101851069587456, 456703499042816, 2042949493276672
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of at least two enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(3) = 12 trees:
7,
(511), (331),
((111)31), (3(111)1), ((311)11), (31111),
((111)(111)1), (((111)11)11), ((11111)11), ((111)1111), (1111111).
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=r[n]=If[OddQ[n],1,0]+Sum[Times@@r/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Table[r[n],{n,1,40,2}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) = (1 - (-1)^n)/2 + Sum_y Product_{i in y} a(i) where the sum is over all non-singleton integer partitions of n with an odd number of parts.
Showing 1-10 of 11 results. Next