A300410 Number of centered square numbers dividing n.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1
Keywords
Examples
a(26) = 2 because 26 has 4 divisors {1, 2, 13, 26} among which 2 divisors {1, 13} are centered square numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Centered Square Number.
- Index entries for sequences related to centered polygonal numbers.
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N,1): for k from 1 do m:= 2*k*(k+1)+1; if m > N then break fi; r:= [seq(i,i=m..N,m)]; V[r]:= map(t->t+1, V[r]); od: convert(V,list); # Robert Israel, Mar 05 2018
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Sum[x^(2 k (k + 1) + 1)/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]
Formula
G.f.: Sum_{k>=0} x^(2*k*(k+1)+1)/(1 - x^(2*k*(k+1)+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A228048 = 1.440659... . - Amiram Eldar, Jan 02 2024