cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300410 Number of centered square numbers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			a(26) = 2 because 26 has 4 divisors {1, 2, 13, 26} among which 2 divisors {1, 13} are centered square numbers.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N,1):
    for k from 1 do
      m:= 2*k*(k+1)+1;
      if m > N then break fi;
      r:= [seq(i,i=m..N,m)];
      V[r]:= map(t->t+1, V[r]);
    od:
    convert(V,list); # Robert Israel, Mar 05 2018
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(2 k (k + 1) + 1)/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=0} x^(2*k*(k+1)+1)/(1 - x^(2*k*(k+1)+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A228048 = 1.440659... . - Amiram Eldar, Jan 02 2024